scholarly journals Dynamics of homeomorphisms on minimal sets generated by triangular mappings

1999 ◽  
Vol 59 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Gian Luigi Forti ◽  
Luigi Paganoni ◽  
Jaroslav Smítal

The main goal of the paper is the construction of a triangular mapping F of the square with zero topological entropy, possessing a minimal set M such that F|M is a strongly chaotic homeomorphism, as well as other properties that are impossible for continuous maps on an interval.To do this we define a parametric class of triangular maps on Q × I, where Q is an infinite minimal set on the interval, which are extendable to continuous triangular maps F: I2 → I2. This class can be used to create other examples.

2003 ◽  
Vol 13 (07) ◽  
pp. 1721-1725 ◽  
Author(s):  
Francisco Balibrea ◽  
Roman Hric ◽  
L'ubomír Snoha

The topological structure of minimal sets of continuous maps on graphs, dendrites and dendroids is studied. A full characterization of minimal sets on graphs and a partial characterization of minimal sets on dendrites are given. An example of a minimal set containing an interval on a dendroid is given.


1993 ◽  
Vol 48 (1) ◽  
pp. 55-67 ◽  
Author(s):  
Lluís Alsedà ◽  
Sergiĭ F. Kolyada ◽  
Ľubomír Snoha

We study the topological entropy of triangular maps of the square. We show that such maps differ from the continuous maps of the interval because there exist triangular maps of the square of “type 2∞” with infinite topological entropy. The set of such maps is dense in the space of triangular maps of “type at most 2∞” and the topological entropy as a function of the triangular maps of the square is not lower semicontinuous. However, we show that for these maps the characterisation of the lower bounds of the topological entropy depending on the set of periods is the same as for the continuous maps of the interval.


1995 ◽  
Vol 05 (05) ◽  
pp. 1433-1435
Author(s):  
F. BALIBREA ◽  
J. SMÍTAL

We give a characterization of the set of nonwandering points of a continuous map f of the interval with zero topological entropy, attracted to a single (infinite) minimal set Q. We show that such a map f can have a unique infinite minimal set Q and an infinite set B ⊂ Ω (f)\ ω (f) (of nonwandering points that are not ω-limit points) attracted to Q and such that B has infinite intersections with infinitely many disjoint orbits of f.


1995 ◽  
Vol 51 (3) ◽  
pp. 395-415 ◽  
Author(s):  
G.L. Forti ◽  
L. Paganoni ◽  
J. Smítal

We show that continuous triangular maps of the square I1, F: (x, y) → (f(x), g(x, y)), exhibit phenomena impossible in the one-dimensional case. In particular: (1) A triangular map F with zero topological entropy can have a minimal set containing an interval {a} × I, and can have recurrent points that are not uniformly recurrent; this solves two problems by S.F. Kolyada.(2) In the class of mappings satisfying Per(F) = Fix(F), there are non-chaotic maps with positive sequence topological entropy and chaotic maps with zero sequence topological entropy.


2021 ◽  
Vol 31 (07) ◽  
pp. 2150100
Author(s):  
Zdeněk Kočan ◽  
Veronika Kurková ◽  
Michal Málek

Dynamical systems generated by continuous maps on compact metric spaces can have various properties, e.g. the existence of an arc horseshoe, the positivity of topological entropy, the existence of a homoclinic trajectory, the existence of an omega-limit set containing two minimal sets and other. In [Kočan et al., 2014] we consider six such properties and survey the relations among them for the cases of graph maps, dendrite maps and maps on compact metric spaces. In this paper, we consider fourteen such properties, provide new results and survey all the relations among the properties for the case of graph maps and all known relations for the case of dendrite maps. We formulate some open problems at the end of the paper.


2012 ◽  
Vol 33 (6) ◽  
pp. 1786-1812 ◽  
Author(s):  
MATÚŠ DIRBÁK ◽  
ĽUBOMÍR SNOHA ◽  
VLADIMÍR ŠPITALSKÝ

AbstractWe study dynamics of continuous maps on compact metrizable spaces containing a free interval (i.e. an open subset homeomorphic to an open interval). Special attention is paid to relationships between topological transitivity, weak and strong topological mixing, dense periodicity and topological entropy as well as to the topological structure of minimal sets. In particular, a trichotomy for minimal sets and a dichotomy for transitive maps are proved.


2019 ◽  
Vol 7 (1) ◽  
pp. 29-37
Author(s):  
Jose S. Cánovas

AbstractIn this paper we review and explore the notion of topological entropy for continuous maps defined on non compact topological spaces which need not be metrizable. We survey the different notions, analyze their relationship and study their properties. Some questions remain open along the paper.


1991 ◽  
Vol 56 (4) ◽  
pp. 1184-1194 ◽  
Author(s):  
Steven Buechler

AbstractLet D be a strongly minimal set in the language L, and D′ ⊃ D an elementary extension with infinite dimension over D. Add to L a unary predicate symbol D and let T′ be the theory of the structure (D′, D), where D interprets the predicate D. It is known that T′ is ω-stable. We proveTheorem A. If D is not locally modular, then T′ has Morley rank ω.We say that a strongly minimal set D is pseudoprojective if it is nontrivial and there is a k < ω such that, for all a, b ∈ D and closed X ⊂ D, a ∈ cl(Xb) ⇒ there is a Y ⊂ X with a ∈ cl(Yb) and ∣Y∣ ≤ k. Using Theorem A, we proveTheorem B. If a strongly minimal set D is pseudoprojective, then D is locally projective.The following result of Hrushovski's (proved in §4) plays a part in the proof of Theorem B.Theorem C. Suppose that D is strongly minimal, and there is some proper elementary extension D1 of D such that the theory of the pair (D1, D) is ω1-categorical. Then D is locally modular.


1985 ◽  
Vol 50 (4) ◽  
pp. 1054-1061 ◽  
Author(s):  
Steven Buechler

AbstractSuppose D ⊂ M is a strongly minimal set definable in M with parameters from C. We say D is locally modular if for all X, Y ⊂ D, with X = acl(X ∪ C)∩D, Y = acl(Y ∪ C) ∩ D and X ∩ Y ≠ ∅,We prove the following theorems.Theorem 1. Suppose M is stable and D ⊂ M is strongly minimal. If D is not locally modular then inMeqthere is a definable pseudoplane.(For a discussion of Meq see [M, §A].) This is the main part of Theorem 1 of [Z2] and the trichotomy theorem of [Z3].Theorem 2. Suppose M is stable and D, D′ ⊂ M are strongly minimal and nonorthogonal. Then D is locally modular if and only if D′ is locally modular.


2012 ◽  
Vol 22 (10) ◽  
pp. 1250259 ◽  
Author(s):  
ZDENĚK KOČAN

We consider various kinds of chaotic behavior of continuous maps on compact metric spaces: the positivity of topological entropy, the existence of a horseshoe, the existence of a homoclinic trajectory (or perhaps, an eventually periodic homoclinic trajectory), three levels of Li–Yorke chaos, three levels of ω-chaos and distributional chaos of type 1. The relations between these properties are known when the space is an interval. We survey the known results in the case of trees, graphs and dendrites.


Sign in / Sign up

Export Citation Format

Share Document