scholarly journals Prediction of fractional Brownian motion with Hurst index less than 1/2

2004 ◽  
Vol 70 (2) ◽  
pp. 321-328 ◽  
Author(s):  
V. V. Anh ◽  
A. Inoue

We give a proof based on an integral equation for an explicit prediction formula for fractional Brownian motion with Hurst index less than 1/2.

2008 ◽  
Vol 48 ◽  
Author(s):  
Kęstutis Kubilius ◽  
Dmitrij Melichov

Let X be a solution of a stochasti Let X be a solution of a stochastic integral equation driven by a fractional Brownian motion BH and let Vn(X, 2) = \sumn k=1(\DeltakX)2, where \DeltakX = X( k+1/n ) - X(k/n ). We study the ditions n2H-1Vn(X, 2) convergence almost surely as n → ∞ holds. This fact is used to obtain a strongly consistent estimator of the Hurst index H, 1/2 < H < 1.  


2009 ◽  
Vol 50 ◽  
Author(s):  
Kęstutis Kubilius ◽  
Dmitrij Melichov

Let X(t) be a solution of a stochastic integral equation driven by fractional Brownian motion BH and let V2n (X, 2) = \sumn-1 k=1(\delta k2X)2 be the second order quadratic variation, where \delta k2X = X (k+1/N) − 2X (k/ n) +X (k−1/n). Conditions under which n2H−1Vn2(X, 2) converges almost surely as n → ∞ was obtained. This fact is used to get a strongly consistent estimator of the Hurst index H, 1/2 < H < 1. Also we show that this estimator retains its properties if we replace Vn2(X, 2) with Vn2(Y, 2), where Y (t) is the Milstein approximation of X(t).


2014 ◽  
Vol 51 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dawei Hong ◽  
Shushuang Man ◽  
Jean-Camille Birget ◽  
Desmond S. Lun

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian motion (FBM) (Bt(H))_t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar wavelets which merely have one vanishing moment, an almost-sure uniform expansion of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation is derived. We also describe a parallel algorithm that generates sample paths of an FBM efficiently.


2017 ◽  
Vol 54 (2) ◽  
pp. 444-461 ◽  
Author(s):  
Fangjun Xu

Abstract We prove a second-order limit law for additive functionals of a d-dimensional fractional Brownian motion with Hurst index H = 1 / d, using the method of moments and extending the Kallianpur–Robbins law, and then give a functional version of this result. That is, we generalize it to the convergence of the finite-dimensional distributions for corresponding stochastic processes.


2022 ◽  
Vol 9 ◽  
Author(s):  
Han Gao ◽  
Rui Guo ◽  
Yang Jin ◽  
Litan Yan

Let SH be a sub-fractional Brownian motion with index 12<H<1. In this paper, we consider the linear self-interacting diffusion driven by SH, which is the solution to the equationdXtH=dStH−θ(∫0tXtH−XsHds)dt+νdt,X0H=0,where θ &lt; 0 and ν∈R are two parameters. Such process XH is called self-repelling and it is an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303 (1995), 87–93]. Our main aim is to study the large time behaviors. We show the solution XH diverges to infinity, as t tends to infinity, and obtain the speed at which the process XH diverges to infinity as t tends to infinity.


2013 ◽  
Vol 50 (1) ◽  
pp. 29-41
Author(s):  
Alexandra Chronopoulou ◽  
Georgios Fellouris

The problem of detecting an abrupt change in the distribution of an arbitrary, sequentially observed, continuous-path stochastic process is considered and the optimality of the CUSUM test is established with respect to a modified version of Lorden's criterion. We apply this result to the case that a random drift emerges in a fractional Brownian motion and we show that the CUSUM test optimizes Lorden's original criterion when a fractional Brownian motion with Hurst index H adopts a polynomial drift term with exponent H+1/2.


2020 ◽  
Vol 37 (9) ◽  
pp. 3243-3268
Author(s):  
S. Saha Ray ◽  
S. Singh

Purpose This paper aims to study fractional Brownian motion and its applications to nonlinear stochastic integral equations. Bernstein polynomials have been applied to obtain the numerical results of the nonlinear fractional stochastic integral equations. Design/methodology/approach Bernstein polynomials have been used to obtain the numerical solutions of nonlinear fractional stochastic integral equations. The fractional stochastic operational matrix based on Bernstein polynomial has been used to discretize the nonlinear fractional stochastic integral equation. Convergence and error analysis of the proposed method have been discussed. Findings Two illustrated examples have been presented to justify the efficiency and applicability of the proposed method. The corresponding obtained numerical results have been compared with the exact solutions to establish the accuracy and efficiency of the proposed method. Originality/value To the best of the authors’ knowledge, nonlinear stochastic Itô–Volterra integral equation driven by fractional Brownian motion has been for the first time solved by using Bernstein polynomials. The obtained numerical results well establish the accuracy and efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document