scholarly journals On estimation of the Hurst index of solutions of stochastic integral equations

2008 ◽  
Vol 48 ◽  
Author(s):  
Kęstutis Kubilius ◽  
Dmitrij Melichov

Let X be a solution of a stochasti Let X be a solution of a stochastic integral equation driven by a fractional Brownian motion BH and let Vn(X, 2) = \sumn k=1(\DeltakX)2, where \DeltakX = X( k+1/n ) - X(k/n ). We study the ditions n2H-1Vn(X, 2) convergence almost surely as n → ∞ holds. This fact is used to obtain a strongly consistent estimator of the Hurst index H, 1/2 < H < 1.  

2009 ◽  
Vol 50 ◽  
Author(s):  
Kęstutis Kubilius ◽  
Dmitrij Melichov

Let X(t) be a solution of a stochastic integral equation driven by fractional Brownian motion BH and let V2n (X, 2) = \sumn-1 k=1(\delta k2X)2 be the second order quadratic variation, where \delta k2X = X (k+1/N) − 2X (k/ n) +X (k−1/n). Conditions under which n2H−1Vn2(X, 2) converges almost surely as n → ∞ was obtained. This fact is used to get a strongly consistent estimator of the Hurst index H, 1/2 < H < 1. Also we show that this estimator retains its properties if we replace Vn2(X, 2) with Vn2(Y, 2), where Y (t) is the Milstein approximation of X(t).


2020 ◽  
Vol 37 (9) ◽  
pp. 3243-3268
Author(s):  
S. Saha Ray ◽  
S. Singh

Purpose This paper aims to study fractional Brownian motion and its applications to nonlinear stochastic integral equations. Bernstein polynomials have been applied to obtain the numerical results of the nonlinear fractional stochastic integral equations. Design/methodology/approach Bernstein polynomials have been used to obtain the numerical solutions of nonlinear fractional stochastic integral equations. The fractional stochastic operational matrix based on Bernstein polynomial has been used to discretize the nonlinear fractional stochastic integral equation. Convergence and error analysis of the proposed method have been discussed. Findings Two illustrated examples have been presented to justify the efficiency and applicability of the proposed method. The corresponding obtained numerical results have been compared with the exact solutions to establish the accuracy and efficiency of the proposed method. Originality/value To the best of the authors’ knowledge, nonlinear stochastic Itô–Volterra integral equation driven by fractional Brownian motion has been for the first time solved by using Bernstein polynomials. The obtained numerical results well establish the accuracy and efficiency of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mengting Deng ◽  
Guo Jiang ◽  
Ting Ke

This paper presents a valid numerical method to solve nonlinear stochastic Itô–Volterra integral equations (SIVIEs) driven by fractional Brownian motion (FBM) with Hurst parameter H ∈ 1 / 2 , 1 . On the basis of FBM and block pulse functions (BPFs), a new stochastic operational matrix is proposed. The nonlinear stochastic integral equation is converted into a nonlinear algebraic equation by this method. Furthermore, error analysis is given by the pathwise approach. Finally, two numerical examples exhibit the validity and accuracy of the approach.


2004 ◽  
Vol 70 (2) ◽  
pp. 321-328 ◽  
Author(s):  
V. V. Anh ◽  
A. Inoue

We give a proof based on an integral equation for an explicit prediction formula for fractional Brownian motion with Hurst index less than 1/2.


1999 ◽  
Vol 12 (1) ◽  
pp. 85-90 ◽  
Author(s):  
M. L. Kleptsyna ◽  
P. E. Kloeden ◽  
V. V. Anh

Integral equations for the mean-square estimate are obtained for the linear filtering problem, in which the noise generating the signal is a fractional Brownian motion with Hurst index h∈(3/4,1) and the noise in the observation process includes a fractional Brownian motion as well as a Wiener process.


2012 ◽  
Vol 12 (04) ◽  
pp. 1250004 ◽  
Author(s):  
MIREIA BESALÚ ◽  
CARLES ROVIRA

In this note we prove an existence and uniqueness result of solution for stochastic Volterra integral equations driven by a fractional Brownian motion with Hurst parameter H > 1/2, showing also that the solution has finite moments. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann–Stieltjes integral.


Author(s):  
M. Fallahpour ◽  
M. Khodabin ◽  
K. Maleknejad

Abstract The finding an efficient way to the approximate solutions of the stochastic integral equations is an essential requirement. In this paper we discuss the convergence analysis of the two-dimensional Haar wavelet functions (2D-HWFs) method for solve 2D linear stochastic Volterra integral equation. The illustrative examples are included to demonstrate the validity and applicability of this numerical method.


1972 ◽  
Vol 9 (01) ◽  
pp. 169-177
Author(s):  
Chris P. Tsokos ◽  
M. A. Hamdan

The object of this paper is to study the stochastic asymptotic exponential stability of a stochastic integral equation of the form A random solution of the stochastic integral equation is considered to be a second order stochastic process satisfying the equation almost surely. The random solution, y(t, ω) is said to be. stochastically asymptotically exponentially stable if there exist some β &gt; 0 and a γ &gt; 0 such that for t∈ R +. The results of the paper extend the results of Tsokos' generalization of the classical stability theorem of Poincaré-Lyapunov.


1972 ◽  
Vol 9 (1) ◽  
pp. 169-177 ◽  
Author(s):  
Chris P. Tsokos ◽  
M. A. Hamdan

The object of this paper is to study the stochastic asymptotic exponential stability of a stochastic integral equation of the form A random solution of the stochastic integral equation is considered to be a second order stochastic process satisfying the equation almost surely. The random solution, y(t, ω) is said to be. stochastically asymptotically exponentially stable if there exist some β > 0 and a γ > 0 such that for t∈ R+.The results of the paper extend the results of Tsokos' generalization of the classical stability theorem of Poincaré-Lyapunov.


2014 ◽  
Vol 51 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dawei Hong ◽  
Shushuang Man ◽  
Jean-Camille Birget ◽  
Desmond S. Lun

We construct a wavelet-based almost-sure uniform approximation of fractional Brownian motion (FBM) (Bt(H))_t∈[0,1] of Hurst index H ∈ (0, 1). Our results show that, by Haar wavelets which merely have one vanishing moment, an almost-sure uniform expansion of FBM for H ∈ (0, 1) can be established. The convergence rate of our approximation is derived. We also describe a parallel algorithm that generates sample paths of an FBM efficiently.


Sign in / Sign up

Export Citation Format

Share Document