scholarly journals Uniformly perfect Julia sets of meromorphic functions

2005 ◽  
Vol 71 (3) ◽  
pp. 387-397
Author(s):  
Sheng Wang ◽  
Liang-Wen Liao

Julia sets of meromorphic functions are uniformly perfect under some suitable conditions. So are Julia sets of the skew product associated with finitely generated semigroup of rational functions.

1993 ◽  
Vol 113 (3) ◽  
pp. 543-559 ◽  
Author(s):  
A. Hinkkanen

AbstractLetfbe a rational function of degree at least two. We shall prove that the Julia setJ(f) offis uniformly perfect. This means that there is a constantc∈(0, 1) depending onfonly such that wheneverz∈J(f) and 0 <r< diamJ(f) thenJ(f) intersects the annulus.


2002 ◽  
Vol 132 (3) ◽  
pp. 531-544 ◽  
Author(s):  
ZHENG JIAN-HUA

We investigate uniform perfectness of the Julia set of a transcendental meromorphic function with finitely many poles and prove that the Julia set of such a meromorphic function is not uniformly perfect if it has only bounded components. The Julia set of an entire function is uniformly perfect if and only if the Julia set including infinity is connected and every component of the Fatou set is simply connected. Furthermore if an entire function has a finite deficient value in the sense of Nevanlinna, then it has no multiply connected stable domains. Finally, we give some examples of meromorphic functions with uniformly perfect Julia sets.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


1996 ◽  
Vol 26 (2) ◽  
pp. 253-275 ◽  
Author(s):  
Toshio Nakata ◽  
Munetaka Nakamura

2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2009 ◽  
Vol 29 (3) ◽  
pp. 875-883 ◽  
Author(s):  
CLINTON P. CURRY ◽  
JOHN C. MAYER ◽  
JONATHAN MEDDAUGH ◽  
JAMES T. ROGERS Jr

AbstractMakienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.


2012 ◽  
Vol 32 (6) ◽  
pp. 1889-1929 ◽  
Author(s):  
DAVID FRIED ◽  
SEBASTIAN M. MAROTTA ◽  
RICH STANKEWITZ

AbstractWe study the dynamics of semigroups of Möbius transformations on the Riemann sphere, especially their Julia sets and attractors. This theory relates to the dynamics of rational functions, rational semigroups, and Möbius groups and we compare and contrast these theories. We particularly examine Caruso’s family of Möbius semigroups, based on a random dynamics variant of the Fibonacci sequence.


Sign in / Sign up

Export Citation Format

Share Document