scholarly journals Weak Type Estimates for Riesz-Laguerre Transforms

2007 ◽  
Vol 75 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Emanuela Sasso

We prove that the first order Riesz transforms associated to the Laguerre semigroup are weak-type (1, 1). We also present a counterexample showing that for the Riesz transforms of order three or higher the weak type (1, 1) estimate fails.

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hong-Quan Li ◽  
Peter Sjögren

AbstractIn the Heisenberg group of dimension $$2n+1$$ 2 n + 1 , we consider the sub-Laplacian with a drift in the horizontal coordinates. There is a related measure for which this operator is symmetric. The corresponding Riesz transforms are known to be $$L^p$$ L p bounded with respect to this measure. We prove that the Riesz transforms of order 1 are also of weak type (1, 1), and that this is false for order 3 and above. Further, we consider the related maximal Littlewood–Paley–Stein operators and prove the weak type (1, 1) for those of order 1 and disprove it for higher orders.


Author(s):  
Valentina Casarino ◽  
Paolo Ciatti ◽  
Peter Sjögren

AbstractWe consider Riesz transforms of any order associated to an Ornstein–Uhlenbeck operator with covariance given by a real, symmetric and positive definite matrix, and with drift given by a real matrix whose eigenvalues have negative real parts. In this general Gaussian context, we prove that a Riesz transform is of weak type (1, 1) with respect to the invariant measure if and only if its order is at most 2.


Author(s):  
Jorge J. Betancor ◽  
Alejandro J. Castro ◽  
Jezabel Curbelo

We establish that the maximal operator and the Littlewood–Paley g-function associated with the heat semigroup defined by multidimensional Bessel operators are of weak type (1, 1). We also prove that Riesz transforms in the multidimensional Bessel setting are of strong type (p, p), for every 1 < p < ∞, and of weak type (1, 1).


2006 ◽  
Vol 253 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Sunggeum Hong ◽  
Paul Taylor ◽  
Chan Woo Yang

1974 ◽  
Vol 49 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Luis Caffarelli ◽  
Calixto Calderón

2004 ◽  
Vol 11 (3) ◽  
pp. 467-478
Author(s):  
György Gát

Abstract We prove that the maximal operator of the Marcinkiewicz mean of integrable two-variable functions is of weak type (1, 1) on bounded two-dimensional Vilenkin groups. Moreover, for any integrable function 𝑓 the Marcinkiewicz mean σ 𝑛𝑓 converges to 𝑓 almost everywhere.


Sign in / Sign up

Export Citation Format

Share Document