scholarly journals Estimates for Operators Related to the Sub-Laplacian with Drift in Heisenberg Groups

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hong-Quan Li ◽  
Peter Sjögren

AbstractIn the Heisenberg group of dimension $$2n+1$$ 2 n + 1 , we consider the sub-Laplacian with a drift in the horizontal coordinates. There is a related measure for which this operator is symmetric. The corresponding Riesz transforms are known to be $$L^p$$ L p bounded with respect to this measure. We prove that the Riesz transforms of order 1 are also of weak type (1, 1), and that this is false for order 3 and above. Further, we consider the related maximal Littlewood–Paley–Stein operators and prove the weak type (1, 1) for those of order 1 and disprove it for higher orders.

Author(s):  
Valentina Casarino ◽  
Paolo Ciatti ◽  
Peter Sjögren

AbstractWe consider Riesz transforms of any order associated to an Ornstein–Uhlenbeck operator with covariance given by a real, symmetric and positive definite matrix, and with drift given by a real matrix whose eigenvalues have negative real parts. In this general Gaussian context, we prove that a Riesz transform is of weak type (1, 1) with respect to the invariant measure if and only if its order is at most 2.


Author(s):  
Jorge J. Betancor ◽  
Alejandro J. Castro ◽  
Jezabel Curbelo

We establish that the maximal operator and the Littlewood–Paley g-function associated with the heat semigroup defined by multidimensional Bessel operators are of weak type (1, 1). We also prove that Riesz transforms in the multidimensional Bessel setting are of strong type (p, p), for every 1 < p < ∞, and of weak type (1, 1).


2007 ◽  
Vol 75 (3) ◽  
pp. 397-408 ◽  
Author(s):  
Emanuela Sasso

We prove that the first order Riesz transforms associated to the Laguerre semigroup are weak-type (1, 1). We also present a counterexample showing that for the Riesz transforms of order three or higher the weak type (1, 1) estimate fails.


2004 ◽  
Vol 11 (3) ◽  
pp. 467-478
Author(s):  
György Gát

Abstract We prove that the maximal operator of the Marcinkiewicz mean of integrable two-variable functions is of weak type (1, 1) on bounded two-dimensional Vilenkin groups. Moreover, for any integrable function 𝑓 the Marcinkiewicz mean σ 𝑛𝑓 converges to 𝑓 almost everywhere.


2004 ◽  
Vol 11 (4) ◽  
pp. 775-782
Author(s):  
M. Megrelishvili

Abstract Let 𝐻(𝑋) := (ℝ × 𝑋) ⋋ 𝑋* be the generalized Heisenberg group induced by a normed space 𝑋. We prove that 𝑋 and 𝑋* are relatively minimal subgroups of 𝐻(𝑋). We show that the group 𝐺 := 𝐻(𝐿4[0, 1]) is reflexively representable but weakly continuous unitary representations of 𝐺 in Hilbert spaces do not separate points of 𝐺. This answers the question of A. Shtern.


1973 ◽  
Vol 16 (3) ◽  
pp. 377-380 ◽  
Author(s):  
Kenneth F. Andersen

The Hermite conjugate Poisson integral of a given f ∊ L1(μ), dμ(y)= exp(—y2) dy, was defined by Muckenhoupt [5, p. 247] aswhereIf the Hermite conjugate function operator T is defined by (Tf) a.e., then one of the main results of [5] is that T is of weak-type (1, 1) and strongtype (p,p) for all p>l.


2020 ◽  
pp. 1-27
Author(s):  
Hong-Quan Li ◽  
Peter Sjögren

Abstract Let $v \ne 0$ be a vector in ${\mathbb {R}}^n$ . Consider the Laplacian on ${\mathbb {R}}^n$ with drift $\Delta _{v} = \Delta + 2v\cdot \nabla $ and the measure $d\mu (x) = e^{2 \langle v, x \rangle } dx$ , with respect to which $\Delta _{v}$ is self-adjoint. This measure has exponential growth with respect to the Euclidean distance. We study weak type $(1, 1)$ and other sharp endpoint estimates for the Riesz transforms of any order, and also for the vertical and horizontal Littlewood–Paley–Stein functions associated with the heat and the Poisson semigroups.


1997 ◽  
Vol 40 (1) ◽  
pp. 193-205
Author(s):  
Qinsheng Lai

In this paper, we obtain some characterizations for the weighted weak type (1, q) inequality to hold for the Hardy-Littlewood maximal operator in the case 0<q<1; prove that there is no nontrivial weight satisfying one-weight weak type (p, q) inequalities when 0<p≠q< ∞, and discuss the equivalence between the weak type (p, q) inequality and the strong type (p, q) inequality when p≠q.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050016
Author(s):  
Michael Ruzhansky ◽  
Bolys Sabitbek ◽  
Durvudkhan Suragan

In this paper, we present geometric Hardy inequalities for the sub-Laplacian in half-spaces of stratified groups. As a consequence, we obtain the following geometric Hardy inequality in a half-space of the Heisenberg group with a sharp constant: [Formula: see text] which solves a conjecture in the paper [S. Larson, Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domain in the Heisenberg group, Bull. Math. Sci. 6 (2016) 335–352]. Here, [Formula: see text] is the angle function. Also, we obtain a version of the Hardy–Sobolev inequality in a half-space of the Heisenberg group: [Formula: see text] where [Formula: see text] is the Euclidean distance to the boundary, [Formula: see text], and [Formula: see text]. For [Formula: see text], this gives the Hardy–Sobolev–Maz’ya inequality on the Heisenberg group.


Sign in / Sign up

Export Citation Format

Share Document