scholarly journals NATURAL PARTIAL ORDER IN SEMIGROUPS OF TRANSFORMATIONS WITH INVARIANT SET

2012 ◽  
Vol 87 (1) ◽  
pp. 94-107 ◽  
Author(s):  
LEI SUN ◽  
LIMIN WANG

AbstractLet 𝒯X be the full transformation semigroup on the nonempty set X. We fix a nonempty subset Y of X and consider the semigroup of transformations that leave Y invariant, and endow it with the so-called natural partial order. Under this partial order, we determine when two elements of S(X,Y ) are related, find the elements which are compatible and describe the maximal elements, the minimal elements and the greatest lower bound of two elements. Also, we show that the semigroup S(X,Y ) is abundant.

2013 ◽  
Vol 12 (08) ◽  
pp. 1350041 ◽  
Author(s):  
LEI SUN ◽  
JUNLING SUN

Let [Formula: see text] be the full transformation semigroup on a nonempty set X and E be an equivalence relation on X. Then [Formula: see text] is a subsemigroup of [Formula: see text]. In this paper, we endow it with the natural partial order. With respect to this partial order, we determine when two elements are related, find the elements which are compatible and describe the maximal (minimal) elements. Also, we investigate the greatest lower bound of two elements.


2013 ◽  
Vol 88 (3) ◽  
pp. 359-368
Author(s):  
LEI SUN ◽  
XIANGJUN XIN

AbstractLet ${ \mathcal{T} }_{X} $ be the full transformation semigroup on a set $X$ and $E$ be a nontrivial equivalence relation on $X$. Denote $$\begin{eqnarray*}{T}_{\exists } (X)= \{ f\in { \mathcal{T} }_{X} : \forall x, y\in X, (f(x), f(y))\in E\Rightarrow (x, y)\in E\} ,\end{eqnarray*}$$ so that ${T}_{\exists } (X)$ is a subsemigroup of ${ \mathcal{T} }_{X} $. In this paper, we endow ${T}_{\exists } (X)$ with the natural partial order and investigate when two elements are related, then find elements which are compatible. Also, we characterise the minimal and maximal elements.


2008 ◽  
Vol 78 (1) ◽  
pp. 117-128 ◽  
Author(s):  
LEI SUN ◽  
HUISHENG PEI ◽  
ZHENGXING CHENG

AbstractLet 𝒯X be the full transformation semigroup on a set X and E be a nontrivial equivalence on X. Write then TE(X) is a subsemigroup of 𝒯X. In this paper, we endow TE(X) with the so-called natural order and determine when two elements of TE(X) are related under this order, then find out elements of TE(X) which are compatible with ≤ on TE(X). Also, the maximal and minimal elements and the covering elements are described.


2014 ◽  
Vol 91 (2) ◽  
pp. 264-267 ◽  
Author(s):  
LEI SUN ◽  
JUNLING SUN

AbstractIn this short note, we describe all the elements in the semigroup $$\begin{eqnarray}S(X,Y)=\{f\in {\mathcal{T}}_{X}:f(Y)\subseteq Y\}\end{eqnarray}$$ which are left compatible with respect to the so-called natural partial order. This result corrects an error in a paper by Sun and Wang [‘Natural partial order in semigroups of transformations with invariant set’, Bull. Aust. Math. Soc.87 (2013), 94–107].


2011 ◽  
Vol 18 (03) ◽  
pp. 523-532 ◽  
Author(s):  
Lei Sun ◽  
Weina Deng ◽  
Huisheng Pei

The paper is concerned with the so-called natural order on the semigroup [Formula: see text], where [Formula: see text] is the full transformation semigroup on a set X, E is a non-trivial equivalence on X and R is a cross-section of the partition X/E induced by E. We determine when two elements of TE(X,R) are related under this order, find elements of TE(X,R) which are compatible with ≤ on TE(X,R), and observe the maximal and minimal elements and the covering elements.


2013 ◽  
Vol 89 (2) ◽  
pp. 279-292 ◽  
Author(s):  
SUREEPORN CHAOPRAKNOI ◽  
TEERAPHONG PHONGPATTANACHAROEN ◽  
PATTANACHAI RAWIWAN

AbstractFor a semigroup $S$, let ${S}^{1} $ be the semigroup obtained from $S$ by adding a new symbol 1 as its identity if $S$ has no identity; otherwise let ${S}^{1} = S$. Mitsch defined the natural partial order $\leqslant $ on a semigroup $S$ as follows: for $a, b\in S$, $a\leqslant b$ if and only if $a= xb= by$ and $a= ay$ for some $x, y\in {S}^{1} $. In this paper, we characterise the natural partial order on some transformation semigroups. In these partially ordered sets, we determine the compatibility of their elements, and find all minimal and maximal elements.


Author(s):  
Jintana Sanwong ◽  
Worachead Sommanee

LetT(X)be the full transformation semigroup on the setXand letT(X,Y)={α∈T(X):Xα⊆Y}. ThenT(X,Y)is a sub-semigroup ofT(X)determined by a nonempty subsetYofX. In this paper, we give a necessary and sufficient condition forT(X,Y)to be regular. In the case thatT(X,Y)is not regular, the largest regular sub-semigroup is obtained and this sub-semigroup is shown to determine the Green's relations onT(X,Y). Also, a class of maximal inverse sub-semigroups ofT(X,Y)is obtained.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250035 ◽  
Author(s):  
Huisheng Pei ◽  
Weina Deng

Let (X, ≤) be a totally ordered finite set, [Formula: see text] be the full transformation semigroup on X and E be an arbitrary equivalence on X. We consider a subsemigroup of [Formula: see text] defined by [Formula: see text] and call it the E-order-preserving transformation semigroup on X. In this paper, we endow EOPX with the so-called natural order ≤ and discuss when two elements in EOPX are related under this order, then determine those elements of EOPX which are compatible with ≤. Also, the maximal (minimal) elements are described.


Author(s):  
Worachead Sommanee

Let TX be the full transformation semigroup on a set X. For a fixed nonempty subset Y of a set X, let TX,Y be the semigroup consisting of all full transformations from X into Y. In a paper published in 2008, Sanwong and Sommanee proved that the set FX,Y=α∈TX,Y:Xα=Yα is the largest regular subsemigroup of TX,Y. In this paper, we describe the maximal inverse subsemigroups of FX,Y and completely determine all the maximal regular subsemigroups of its ideals.


2010 ◽  
Vol 81 (2) ◽  
pp. 195-207 ◽  
Author(s):  
BOORAPA SINGHA ◽  
JINTANA SANWONG ◽  
R. P. SULLIVAN

AbstractMarques-Smith and Sullivan [‘Partial orders on transformation semigroups’, Monatsh. Math.140 (2003), 103–118] studied various properties of two partial orders on P(X), the semigroup (under composition) consisting of all partial transformations of an arbitrary set X. One partial order was the ‘containment order’: namely, if α,β∈P(X) then α⊆β means xα=xβ for all x∈dom α, the domain of α. The other order was the so-called ‘natural order’ defined by Mitsch [‘A natural partial order for semigroups’, Proc. Amer. Math. Soc.97(3) (1986), 384–388] for any semigroup. In this paper, we consider these and other orders defined on the symmetric inverse semigroup I(X) and the partial Baer–Levi semigroup PS(q). We show that there are surprising differences between the orders on these semigroups, concerned with their compatibility with respect to composition and the existence of maximal and minimal elements.


Sign in / Sign up

Export Citation Format

Share Document