semigroup of transformations
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Thananya Kaewnoi ◽  
Ronnason Chinram ◽  
Montakarn Petapirak

Let X be a nonempty set and ρ be an equivalence relation on X . For a nonempty subset S of X , we denote the semigroup of transformations restricted by an equivalence relation ρ fixing S pointwise by E F S X , ρ . In this paper, magnifying elements in E F S X , ρ will be investigated. Moreover, we will give the necessary and sufficient conditions for elements in E F S X , ρ to be right or left magnifying elements.


2020 ◽  
Vol 44 (6) ◽  
pp. 2132-2146
Author(s):  
Laddawan LOHAPAN ◽  
Jörg KOPPITZ ◽  
Somnuek WORAWISET

2019 ◽  
Vol 7 (1) ◽  
pp. 322-347
Author(s):  
Piotr Jaworski

AbstractWe study the dynamics of the family of copulas {Ct}t≥0 of a pair of stochastic processes given by stochastic differential equations (SDE). We associate to it a parabolic partial differential equation (PDE). Having embedded the set of bivariate copulas in a dual of a Sobolev Hilbert space H1 (ℝ2)* we calculate the derivative with respect to t and the *weak topology i.e. the tangent vector field to the image of the curve t → Ct. Furthermore we show that the family {Ct}t≥0 is an orbit of a strongly continuous semigroup of transformations and provide the infinitesimal generator of this semigroup.


2019 ◽  
Vol 43 (2) ◽  
pp. 1761-1773
Author(s):  
Ratana Srithus ◽  
Ronnason Chinram ◽  
Chompunutch Khongthat

Mathematics ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 134
Author(s):  
Chollawat Pookpienlert ◽  
Preeyanuch Honyam ◽  
Jintana Sanwong

Let T(X,Y) be the semigroup consisting of all total transformations from X into a fixed nonempty subset Y of X. For an equivalence relation ρ on X, let ρ^ be the restriction of ρ on Y, R a cross-section of Y/ρ^ and define T(X,Y,ρ,R) to be the set of all total transformations α from X into Y such that α preserves both ρ (if (a,b)∈ρ, then (aα,bα)∈ρ) and R (if r∈R, then rα∈R). T(X,Y,ρ,R) is then a subsemigroup of T(X,Y). In this paper, we give descriptions of Green’s relations on T(X,Y,ρ,R), and these results extend the results on T(X,Y) and T(X,ρ,R) when taking ρ to be the identity relation and Y=X, respectively.


2015 ◽  
Vol 159 (2) ◽  
pp. 339-353 ◽  
Author(s):  
JOÃO ARAÚJO ◽  
WOLFRAM BENTZ ◽  
JAMES D. MITCHELL ◽  
CSABA SCHNEIDER

AbstractLet $\mathcal{P}$ be a partition of a finite set X. We say that a transformation f : X → X preserves (or stabilises) the partition $\mathcal{P}$ if for all P ∈ $\mathcal{P}$ there exists Q ∈ $\mathcal{P}$ such that Pf ⊆ Q. Let T(X, $\mathcal{P}$) denote the semigroup of all full transformations of X that preserve the partition $\mathcal{P}$.In 2005 Pei Huisheng found an upper bound for the minimum size of the generating sets of T(X, $\mathcal{P}$), when $\mathcal{P}$ is a partition in which all of its parts have the same size. In addition, Pei Huisheng conjectured that his bound was exact. In 2009 the first and last authors used representation theory to solve Pei Huisheng's conjecture.The aim of this paper is to solve the more complex problem of finding the minimum size of the generating sets of T(X, $\mathcal{P}$), when $\mathcal{P}$ is an arbitrary partition. Again we use representation theory to find the minimum number of elements needed to generate the wreath product of finitely many symmetric groups, and then use this result to solve the problem.The paper ends with a number of problems for experts in group and semigroup theories.


2013 ◽  
Vol 06 (01) ◽  
pp. 1350006 ◽  
Author(s):  
Suzana Mendes-Gonçalves ◽  
R. P. Sullivan

If X and Y are sets, we let P(X, Y) denote the set of all partial transformations from X into Y (that is, all mappings whose domain and range are subsets of X and Y, respectively). If θ ∈ P(Y, X), then P(X, Y) is a so-called "generalized semigroup" of transformations under the "sandwich operation": α * β = α ◦ θ ◦ β, for each α, β ∈ P(X, Y). We denote this semigroup by P(X, Y, θ) and, in this paper, we characterize Green's relations on it: that is, we study equivalence relations which determine when principal left (or right, or 2-sided) ideals in P(X, Y, θ) are equal. This solves a problem raised by Magill and Subbiah in 1975. We also discuss the same idea for important subsemigroups of P(X, Y, θ) and characterize when these semigroups satisfy certain regularity conditions.


2010 ◽  
Vol 83 (2) ◽  
pp. 273-288 ◽  
Author(s):  
D. G. FITZGERALD ◽  
KWOK WAI LAU

AbstractThe partition monoid is a salient natural example of a *-regular semigroup. We find a Galois connection between elements of the partition monoid and binary relations, and use it to show that the partition monoid contains copies of the semigroup of transformations and the symmetric and dual-symmetric inverse semigroups on the underlying set. We characterize the divisibility preorders and the natural order on the (straight) partition monoid, using certain graphical structures associated with each element. This gives a simpler characterization of Green’s relations. We also derive a new interpretation of the natural order on the transformation semigroup. The results are also used to describe the ideal lattices of the straight and twisted partition monoids and the Brauer monoid.


Sign in / Sign up

Export Citation Format

Share Document