scholarly journals ONE-POINT EXTENSIONS AND LOCAL TOPOLOGICAL PROPERTIES

2012 ◽  
Vol 88 (1) ◽  
pp. 12-16 ◽  
Author(s):  
M. R. KOUSHESH

AbstractA space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension of $X$ if $Y\setminus X$ is a singleton. P. Alexandroff proved that any locally compact non-compact Hausdorff space $X$ has a one-point compact Hausdorff extension, called the one-point compactification of $X$. Motivated by this, Mrówka and Tsai [‘On local topological properties. II’, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.19 (1971), 1035–1040] posed the following more general question: For what pairs of topological properties ${\mathscr P}$ and ${\mathscr Q}$ does a locally-${\mathscr P}$ space $X$ having ${\mathscr Q}$ possess a one-point extension having both ${\mathscr P}$ and ${\mathscr Q}$? Here, we provide an answer to this old question.

1974 ◽  
Vol 26 (4) ◽  
pp. 920-930 ◽  
Author(s):  
R. Grant Woods

Let X be a locally compact Hausdorff topological space. A compactification of X is a compact Hausdorff space which contains X as a dense subspace. Two compactifications αX and γX of X are equivalent if there is a homeomorphism from αX onto γX that fixes X pointwise. We shall identify equivalent compactifications of a given space. If is a family of compactifications of X, we can partially order by saying that αX ≦ γX if there is a continuous map from γX onto αX that fixes X pointwise.


Author(s):  
Manuel Felipe Cerpa-Torres ◽  
Michael A. Rincón-Villamizar

For a locally compact Hausdorff space K and a Banach space X, let C0K,X be the Banach space of all X-valued continuous functions defined on K, which vanish at infinite provided with the sup norm. If X is ℝ, we denote C0K,X as C0K. If AK be an extremely regular subspace of C0K and T:AK⟶C0S,X is an into isomorphism, what can be said about the set-theoretical or topological properties of K and S? Answering the question, we will prove that if X contains no copy of c0, then the cardinality of K is less than that of S. Moreover, if TT−1<3 and AK is also a subalgebra of C0K, the cardinality of the αth derivative of K is less than that of the αth derivative of S, for each ordinal α. Finally, if λX>1 and TT−1<λX, then K is a continuous image of a subspace of S. Here, λX is the geometrical parameter introduced by Jarosz in 1989: λX=infmaxx+λy:λ=1:x=y=1. As a consequence, we improve classical results about into isomorphisms from extremely regular subspaces already obtained by Cengiz.


2015 ◽  
Vol 99 (1) ◽  
pp. 76-84
Author(s):  
M. R. KOUSHESH

A space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension if $Y\setminus X$ is a singleton. Compact extensions are called compactifications and connected extensions are called connectifications. It is well known that every locally compact noncompact space has a one-point compactification (known as the Alexandroff compactification) obtained by adding a point at infinity. A locally connected disconnected space, however, may fail to have a one-point connectification. It is indeed a long-standing question of Alexandroff to characterize spaces which have a one-point connectification. Here we prove that in the class of completely regular spaces, a locally connected space has a one-point connectification if and only if it contains no compact component.


1994 ◽  
Vol 05 (02) ◽  
pp. 201-212 ◽  
Author(s):  
HERBERT KAMOWITZ ◽  
STEPHEN SCHEINBERG

Many commutative semisimple Banach algebras B including B = C (X), X compact, and B = L1 (G), G locally compact, have the property that every homomorphism from B into C1[0, 1] is compact. In this paper we consider this property for uniform algebras. Several examples of homomorphisms from somewhat complicated algebras of analytic functions to C1[0, 1] are shown to be compact. This, together with the fact that every homomorphism from the disc algebra and from the algebra H∞ (∆), ∆ = unit disc, to C1[0, 1] is compact, led to the conjecture that perhaps every homomorphism from a uniform algebra into C1[0, 1] is compact. The main result to which we devote the second half of this paper, is to construct a compact Hausdorff space X, a uniformly closed subalgebra [Formula: see text] of C (X), and an arc ϕ: [0, 1] → X such that the transformation T defined by Tf = f ◦ ϕ is a (bounded) homomorphism of [Formula: see text] into C1[0, 1] which is not compact.


1973 ◽  
Vol 16 (3) ◽  
pp. 435-437 ◽  
Author(s):  
C. Eberhart ◽  
J. B. Fugate ◽  
L. Mohler

It is well known (see [3](1)) that no continuum (i.e. compact, connected, Hausdorff space) can be written as a countable disjoint union of its (nonvoid) closed subsets. This result can be generalized in two ways into the setting of locally compact, connected, Hausdorff spaces. Using the one point compactification of a locally compact, connected, Hausdorff space X one can easily show that X cannot be written as a countable disjoint union of compact subsets. If one makes the further assumption that X is locally connected, then one can show that X cannot be written as a countable disjoint union of closed subsets.(2)


1974 ◽  
Vol 53 ◽  
pp. 127-135 ◽  
Author(s):  
Isao Higuchi ◽  
Masayuki Itô

In the potential theory with respect to a non-symmetric function-kernel, the following theorem is obtained by M. Kishi ([3]).Let X be a locally compact Hausdorff space and G be a lower semi-continuous function-kernel on X. Assume that G(x, x)>0 for any x in X and that G and the adjoint kernel Ğ of G satisfy “the continuity principle”.


1994 ◽  
Vol 50 (3) ◽  
pp. 445-449 ◽  
Author(s):  
T.K. Das

By constructing the projective lift of a dp-epimorphism, we find a covariant functor E from the category Cd of regular Hausdorff spaces and continuous dp-epimorphisms to its coreflective subcategory εd consisting of projective objects of Cd We use E to show that E(X/G) is homeomorphic to EX/G whenever G is a properly discontinuous group of homeomorphisms of a locally compact Hausdorff space X and X/G is an object of Cd.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Liaqat Ali Khan ◽  
Saud M. Alsulami

In 1961, Wang showed that ifAis the commutativeC*-algebraC0(X)withXa locally compact Hausdorff space, thenM(C0(X))≅Cb(X). Later, this type of characterization of multipliers of spaces of continuous scalar-valued functions has also been generalized to algebras and modules of continuous vector-valued functions by several authors. In this paper, we obtain further extension of these results by showing thatHomC0(X,A)(C0(X,E),C0(X,F))≃Cs,b(X,HomA(E,F)),whereEandFarep-normed spaces which are also essential isometric leftA-modules withAbeing a certain commutativeF-algebra, not necessarily locally convex. Our results unify and extend several known results in the literature.


Author(s):  
S. I. Ahmed ◽  
W. F. Pfeffer

AbstractWe present a systematic and self-contained exposition of the generalized Riemann integral in a locally compact Hausdorff space, and we show that it is equivalent to the Perron and variational integrals. We also give a necessary and sufficient condition for its equivalence to the Lebesgue integral with respect to a suitably chosen measure.


Sign in / Sign up

Export Citation Format

Share Document