scholarly journals ONE-POINT CONNECTIFICATIONS

2015 ◽  
Vol 99 (1) ◽  
pp. 76-84
Author(s):  
M. R. KOUSHESH

A space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension if $Y\setminus X$ is a singleton. Compact extensions are called compactifications and connected extensions are called connectifications. It is well known that every locally compact noncompact space has a one-point compactification (known as the Alexandroff compactification) obtained by adding a point at infinity. A locally connected disconnected space, however, may fail to have a one-point connectification. It is indeed a long-standing question of Alexandroff to characterize spaces which have a one-point connectification. Here we prove that in the class of completely regular spaces, a locally connected space has a one-point connectification if and only if it contains no compact component.

2012 ◽  
Vol 88 (1) ◽  
pp. 12-16 ◽  
Author(s):  
M. R. KOUSHESH

AbstractA space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension of $X$ if $Y\setminus X$ is a singleton. P. Alexandroff proved that any locally compact non-compact Hausdorff space $X$ has a one-point compact Hausdorff extension, called the one-point compactification of $X$. Motivated by this, Mrówka and Tsai [‘On local topological properties. II’, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.19 (1971), 1035–1040] posed the following more general question: For what pairs of topological properties ${\mathscr P}$ and ${\mathscr Q}$ does a locally-${\mathscr P}$ space $X$ having ${\mathscr Q}$ possess a one-point extension having both ${\mathscr P}$ and ${\mathscr Q}$? Here, we provide an answer to this old question.


2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Ľubica Holá

AbstractWe show that a completely regular space Y is a p-space (a Čech-complete space, a locally compact space) if and only if given a dense subspace A of any topological space X and a continuous f: A → Y there are a p-embedded subset (resp. a G δ-subset, an open subset) M of X containing A and a quasicontinuous subcontinuous extension f*: M → Y of f continuous at every point of A. A result concerning a continuous extension to a residual set is also given.


1977 ◽  
Vol 18 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Bridget Bos Baird

All topological spaces here are assumed to be T2. The collection F(Y)of all homeomorphisms whose domains and ranges are closed subsets of a topological space Y is an inverse semigroup under the operation of composition. We are interested in the general problem of getting some information about the subsemigroups of F(Y) whenever Y is a compact metric space. Here, we specifically look at the problem of determining those spaces X with the property that F(X) is isomorphic to a subsemigroup of F(Y). The main result states that if X is any first countable space with an uncountable number of points, then the semigroup F(X) can be embedded into the semigroup F(Y) if and only if either X is compact and Y contains a copy of X, or X is noncompact and locally compact and Y contains a copy of the one-point compactification of X.


1972 ◽  
Vol 24 (4) ◽  
pp. 622-630 ◽  
Author(s):  
Jack R. Porter ◽  
R. Grant Woods

Let X be a metric space. Assume either that X is locally compact or that X has no more than countably many isolated points. It is proved that if F is a nowhere dense subset of X, then it is regularly nowhere dense (in the sense of Katětov) and hence is contained in the topological boundary of some regular-closed subset of X. This result is used to obtain new properties of the remote points of the Stone-Čech compactification of a metric space without isolated points.Let βX denote the Stone-Čech compactification of the completely regular Hausdorff space X. Fine and Gillman [3] define a point p of βX to be remote if p is not in the βX-closure of a discrete subset of X.


1973 ◽  
Vol 16 (3) ◽  
pp. 435-437 ◽  
Author(s):  
C. Eberhart ◽  
J. B. Fugate ◽  
L. Mohler

It is well known (see [3](1)) that no continuum (i.e. compact, connected, Hausdorff space) can be written as a countable disjoint union of its (nonvoid) closed subsets. This result can be generalized in two ways into the setting of locally compact, connected, Hausdorff spaces. Using the one point compactification of a locally compact, connected, Hausdorff space X one can easily show that X cannot be written as a countable disjoint union of compact subsets. If one makes the further assumption that X is locally connected, then one can show that X cannot be written as a countable disjoint union of closed subsets.(2)


1981 ◽  
Vol 34 (2) ◽  
pp. 349-355
Author(s):  
David John

The fact that simple links in locally compact connected metric spaces are nondegenerate was probably first established by C. Kuratowski and G. T. Whyburn in [2], where it is proved for Peano continua. J. L. Kelley in [3] established it for arbitrary metric continua, and A. D. Wallace extended the theorem to Hausdorff continua in [4]. In [1], B. Lehman proved this theorem for locally compact, locally connected Hausdorff spaces. We will show that the locally connected property is not necessary.A continuum is a compact connected Hausdorff space. For any two points a and b of a connected space M, E(a, b) denotes the set of all points of M which separate a from b in M. The interval ab of M is the set E(a, b) ∪ {a, b}.


1974 ◽  
Vol 26 (4) ◽  
pp. 920-930 ◽  
Author(s):  
R. Grant Woods

Let X be a locally compact Hausdorff topological space. A compactification of X is a compact Hausdorff space which contains X as a dense subspace. Two compactifications αX and γX of X are equivalent if there is a homeomorphism from αX onto γX that fixes X pointwise. We shall identify equivalent compactifications of a given space. If is a family of compactifications of X, we can partially order by saying that αX ≦ γX if there is a continuous map from γX onto αX that fixes X pointwise.


1972 ◽  
Vol 15 (1) ◽  
pp. 145-146 ◽  
Author(s):  
Aubrey Wulfsohn

We give an alternative construction of a Hausdorff compactification due to Fell [2]. We say that a space is compact if it has the Heine-Borel property, locally compact if each point has a fundamental system of compact neighbourhoods. The interesting spaces from the point of view of this paper, are the non-Hausdorjf ones since for locally compact Hausdorff spaces Fell's compactification is the usual one-point compactification. The motivation for the compactification comes from the theory of continuous fields of C*-algebras: the primitive spectrum of a C*- algebra A is a locally compact T0 space X and Fell [3] realizes A as an algebra of fields of operators over the compactification of X. This note is based on a discussion of the author with Professor Fell.


1983 ◽  
Vol 26 (3) ◽  
pp. 347-350
Author(s):  
James Hatzenbuhler ◽  
Don A. Mattson ◽  
Walter S. Sizer

AbstractLet X be a locally compact, completely regular Hausdorff space. In this paper it is shown that all compact metric spaces are remainders of X if and only if the quotient ring C*(X)/C∞(X) contains a subring having no primitive idempotents.


1971 ◽  
Vol 23 (3) ◽  
pp. 495-502 ◽  
Author(s):  
R. Grant Woods

Let X be a completely regular Hausdorff space, and let βX denote the Stone-Čech compactification of X. A point p ∈ βX is called a remote point of βX if p does not belong to the βX-closure of any discrete subspace of X. Remote points were first defined and studied by Fine and Gillman, who proved that if the continuum hypothesis is assumed then the set of remote points of βR((βQ) is dense in βR – R(βQ – Q ) (R denotes the space of reals, Q the space of rationals). Assuming the continuum hypothesis, Plank has proved that if X is a locally compact, non-compact, separable metric space without isolated points, then βX has a set of remote points that is dense in βX – X. Robinson has extended this result by dropping the assumption that X is separable.


Sign in / Sign up

Export Citation Format

Share Document