scholarly journals DIRECTIONAL MAXIMAL OPERATORS AND RADIAL WEIGHTS ON THE PLANE

2013 ◽  
Vol 89 (3) ◽  
pp. 397-414
Author(s):  
HIROKI SAITO ◽  
HITOSHI TANAKA

AbstractLet $\Omega $ be the set of unit vectors and $w$ be a radial weight on the plane. We consider the weighted directional maximal operator defined by $$\begin{eqnarray*}{M}_{\Omega , w} f(x): = \sup _{x\in R\in \mathcal{B} _{\Omega }}\frac{1}{w(R)} \int \nolimits \nolimits_{R} \vert f(y)\vert w(y)\hspace{0.167em} dy,\end{eqnarray*}$$ where ${ \mathcal{B} }_{\Omega } $ denotes the set of all rectangles on the plane whose longest side is parallel to some unit vector in $\Omega $ and $w(R)$ denotes $\int \nolimits \nolimits_{R} w$. In this paper we prove an almost-orthogonality principle for this maximal operator under certain conditions on the weight. The condition allows us to get the weighted norm inequality $$\begin{eqnarray*}\Vert {M}_{\Omega , w} f\mathop{\Vert }\nolimits_{{L}^{2} (w)} \leq C\log N\Vert f\mathop{\Vert }\nolimits_{{L}^{2} (w)} ,\end{eqnarray*}$$ when $w(x)= \vert x\hspace{-1.2pt}\mathop{\vert }\nolimits ^{a} $, $a\gt 0$, and when $\Omega $ is the set of unit vectors on the plane with cardinality $N$ sufficiently large.

Author(s):  
P. Heywood ◽  
P. G. Rooney

SynopsisWe give conditions on pairs of non-negative weight functions U and V which are sufficient that for 1<p≤<∞where Hλ is the Hankel transformation.The technique of proof is a variant of Muckenhoupt's recent proof for the boundedness of the Fourier transformation between weighted Lp spaces, and we can also use this variant to prove a somewhat different boundedness theorem for the Fourier transformation.


1996 ◽  
Vol 54 (3) ◽  
pp. 459-471 ◽  
Author(s):  
Toshiyuki Kitada

We study, under the setting of a locally compact Vilenkin group G, a weighted norm inequality for the potential operators of Riesz type and its applications to multipliers on G. We also consider the maximal operators of fractional type.


2016 ◽  
Vol 59 (3) ◽  
pp. 533-547 ◽  
Author(s):  
ADAM OSȨKOWSKI

AbstractLet $\mathcal{M}$ and G denote, respectively, the maximal operator and the geometric maximal operator associated with the dyadic lattice on $\mathbb{R}^d$. (i)We prove that for any 0 < p < ∞, any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, we have Fefferman–Stein-type estimate $$\begin{equation*} ||G(f)||_{L^p(w)}\leq e^{1/p}||f||_{L^p(\mathcal{M}w)}. \end{equation*} $$ For each p, the constant e1/p is the best possible.(ii)We show that for any weight w on $\mathbb{R}^d$ and any measurable f on $\mathbb{R}^d$, $$\begin{equation*} \int_{\mathbb{R}^d} G(f)^{1/\mathcal{M}w}w\mbox{d}x\leq e\int_{\mathbb{R}^d} |f|^{1/w}w\mbox{d}x \end{equation*} $$ and prove that the constant e is optimal. Actually, we establish the above estimates in a more general setting of maximal operators on probability spaces equipped with a tree-like structure.


2012 ◽  
Vol 54 (3) ◽  
pp. 655-663
Author(s):  
ADAM OSȨKOWSKI

AbstractLet μ be a Borel measure on ℝ. The paper contains the proofs of the estimates and Here A is a subset of ℝ, f is a μ-locally integrable function, μ is the uncentred maximal operator with respect to μ and cp,q, and Cp,q are finite constants depending only on the parameters indicated. In the case when μ is the Lebesgue measure, the optimal choices for cp,q and Cp,q are determined. As an application, we present some related tight bounds for the strong maximal operator on ℝn with respect to a general product measure.


1999 ◽  
Vol 51 (2) ◽  
pp. 141-161 ◽  
Author(s):  
Dashan Fan ◽  
Yibiao Pan ◽  
Dachun Yang

Sign in / Sign up

Export Citation Format

Share Document