CONGRUENCE OF SYMMETRIC INNER PRODUCTS OVER FINITE COMMUTATIVE RINGS OF ODD CHARACTERISTIC

2017 ◽  
Vol 96 (3) ◽  
pp. 389-397
Author(s):  
SONGPON SRIWONGSA

Let $R$ be a finite commutative ring of odd characteristic and let $V$ be a free $R$-module of finite rank. We classify symmetric inner products defined on $V$ up to congruence and find the number of such symmetric inner products. Additionally, if $R$ is a finite local ring, the number of congruent symmetric inner products defined on $V$ in each congruence class is determined.

2019 ◽  
Vol 19 (12) ◽  
pp. 2050226 ◽  
Author(s):  
G. Kalaimurugan ◽  
P. Vignesh ◽  
T. Tamizh Chelvam

Let [Formula: see text] be a finite commutative ring without identity. In this paper, we characterize all finite commutative rings without identity, whose zero-divisor graphs are unicyclic, claw-free and tree. Also, we obtain all finite commutative rings without identity and of cube-free order for which the corresponding zero-divisor graph is toroidal.


2019 ◽  
Vol 19 (09) ◽  
pp. 2050173
Author(s):  
Xiaogang Liu ◽  
Chengxin Yan

Let [Formula: see text] denote the unitary homogeneous bi-Cayley graph over a finite commutative ring [Formula: see text]. In this paper, we determine the energy of [Formula: see text] and that of its complement and line graph, and characterize when such graphs are hyperenergetic. We also give a necessary and sufficient condition for [Formula: see text] (respectively, the complement of [Formula: see text], the line graph of [Formula: see text]) to be Ramanujan.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850121
Author(s):  
K. Selvakumar ◽  
M. Subajini ◽  
M. J. Nikmehr

Let [Formula: see text] be a commutative ring with identity and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus of [Formula: see text] is two.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250103 ◽  
Author(s):  
MOJGAN AFKHAMI ◽  
KAZEM KHASHYARMANESH

Let R be a commutative ring with nonzero identity. The cozero-divisor graph of R, denoted by Γ′(R), is a graph with vertex-set W*(R), which is the set of all nonzero and non-unit elements of R, and two distinct vertices a and b in W*(R) are adjacent if and only if a ∉ Rb and b ∉ Ra. In this paper, we characterize all finite commutative rings R such that Γ′(R) is planar, outerplanar or ring graph.


2015 ◽  
Vol 07 (01) ◽  
pp. 1450064 ◽  
Author(s):  
Guixin Deng ◽  
Lawrence Somer

For a finite commutative ring R and a positive integer k, let G(R, k) denote the digraph whose set of vertices is R and for which there is a directed edge from a to ak. The digraph G(R, k) is called symmetric of order M if its set of connected components can be partitioned into subsets of size M with each subset containing M isomorphic components. We primarily aim to factor G(R, k) into the product of its subdigraphs. If the characteristic of R is a prime p, we obtain several sufficient conditions for G(R, k) to be symmetric of order M.


2012 ◽  
Vol 19 (03) ◽  
pp. 569-580 ◽  
Author(s):  
Yangjiang Wei ◽  
Gaohua Tang ◽  
Huadong Su

For a finite commutative ring R, the square mapping graph of R is a directed graph Γ(R) whose set of vertices is all the elements of R and for which there is a directed edge from a to b if and only if a2=b. We establish necessary and sufficient conditions for the existence of isolated fixed points, and the cycles with length greater than 1 in Γ(R). We also examine when the induced subgraph on the set of zero-divisors of a local ring with odd characteristic is semiregular. Moreover, we completely determine the finite commutative rings whose square mapping graphs have exactly two, three or four components.


2018 ◽  
Vol 17 (03) ◽  
pp. 1850054 ◽  
Author(s):  
M. A. Esmkhani ◽  
S. M. Jafarian Amiri

Let [Formula: see text] be a finite commutative ring. We denote by [Formula: see text] the probability that the multiplication of two randomly chosen elements of [Formula: see text] is zero. In this paper, we show that either [Formula: see text] or [Formula: see text] for any ring [Formula: see text] and determine all rings [Formula: see text] with [Formula: see text]. Also, we obtain the structures of rings [Formula: see text] having maximum or minimum value of [Formula: see text] among all rings with identity of the same size. We characterize all rings [Formula: see text] with identity such that [Formula: see text]. Finally, we compute [Formula: see text] where [Formula: see text] is a PIR local ring.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


Author(s):  
Songpon Sriwongsa

Let [Formula: see text] be a finite commutative ring with identity. In this paper, we give a necessary condition for the existence of an orthogonal decomposition of the special linear Lie algebra over [Formula: see text]. Additionally, we study orthogonal decompositions of the symplectic Lie algebra and the special orthogonal Lie algebra over [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document