THE RECIPROCITY LAW FOR THE TWISTED SECOND MOMENT OF DIRICHLET -FUNCTIONS OVER RATIONAL FUNCTION FIELDS

2018 ◽  
Vol 98 (3) ◽  
pp. 383-388 ◽  
Author(s):  
GORAN DJANKOVIĆ

We prove the reciprocity law for the twisted second moments of Dirichlet $L$-functions over rational function fields, corresponding to two irreducible polynomials. This formula is the analogue of the formulas for Dirichlet $L$-functions over $\mathbb{Q}$ obtained by Conrey [‘The mean-square of Dirichlet $L$-functions’, arXiv:0708.2699 [math.NT] (2007)] and Young [‘The reciprocity law for the twisted second moment of Dirichlet $L$-functions’, Forum Math. 23(6) (2011), 1323–1337].

2021 ◽  
Vol 56 (1) ◽  
pp. 79-94
Author(s):  
Nikola Lelas ◽  

We investigate the classical Pólya and Turán conjectures in the context of rational function fields over finite fields 𝔽q. Related to these two conjectures we investigate the sign of truncations of Dirichlet L-functions at point s=1 corresponding to quadratic characters over 𝔽q[t], prove a variant of a theorem of Landau for arbitrary sets of monic, irreducible polynomials over 𝔽q[t] and calculate the mean value of certain variants of the Liouville function over 𝔽q[t].


1985 ◽  
Vol 15 (2) ◽  
pp. 103-121 ◽  
Author(s):  
William S. Jewell ◽  
Rene Schnieper

AbstractCredibility theory refers to the use of linear least-squares theory to approximate the Bayesian forecast of the mean of a future observation; families are known where the credibility formula is exact Bayesian. Second-moment forecasts are also of interest, for example, in assessing the precision of the mean estimate. For some of these same families, the second-moment forecast is exact in linear and quadratic functions of the sample mean. On the other hand, for the normal distribution with normal-gamma prior on the mean and variance, the exact forecast of the variance is a linear function of the sample variance and the squared deviation of the sample mean from the prior mean. Bühlmann has given a credibility approximation to the variance in terms of the sample mean and sample variance.In this paper, we present a unified approach to estimating both first and second moments of future observations using linear functions of the sample mean and two sample second moments; the resulting least-squares analysis requires the solution of a 3 × 3 linear system, using 11 prior moments from the collective and giving joint predictions of all moments of interest. Previously developed special cases follow immediately. For many analytic models of interest, 3-dimensional joint prediction is significantly better than independent forecasts using the “natural” statistics for each moment when the number of samples is small. However, the expected squared-errors of the forecasts become comparable as the sample size increases.


1988 ◽  
Vol 25 (04) ◽  
pp. 708-716
Author(s):  
Peter Waksman

For a plane domain the circle transform assigns to each circle its length of intersection with the domain. The problem is to determine the geometry of the domain given the mean of these intersection lengths as the circles' centers vary and given how that mean varies with circle radius. We also consider the mean square and higher moments of the intersection lengths — as a function of the circle radius. The discussion includes an identification of the geometric content of the mean when centers are inside of a disk and of the second moment when the centers are arbitrary points in the plane. The latter is equivalent to the distribution of distance between pairs of points of the domain.


1975 ◽  
Vol 7 (03) ◽  
pp. 468-494
Author(s):  
H. Hering

We construct an immigration-branching process from an inhomogeneous Poisson process, a parameter-dependent probability distribution of populations and a Markov branching process with homogeneous transition function. The set of types is arbitrary, and the parameter is allowed to be discrete or continuous. Assuming a supercritical branching part with primitive first moments and finite second moments, we prove propositions on the mean square convergence and the almost sure convergence of normalized averaging processes associated with the immigration-branching process.


1988 ◽  
Vol 25 (4) ◽  
pp. 708-716
Author(s):  
Peter Waksman

For a plane domain the circle transform assigns to each circle its length of intersection with the domain. The problem is to determine the geometry of the domain given the mean of these intersection lengths as the circles' centers vary and given how that mean varies with circle radius. We also consider the mean square and higher moments of the intersection lengths — as a function of the circle radius. The discussion includes an identification of the geometric content of the mean when centers are inside of a disk and of the second moment when the centers are arbitrary points in the plane. The latter is equivalent to the distribution of distance between pairs of points of the domain.


1975 ◽  
Vol 7 (3) ◽  
pp. 468-494
Author(s):  
H. Hering

We construct an immigration-branching process from an inhomogeneous Poisson process, a parameter-dependent probability distribution of populations and a Markov branching process with homogeneous transition function. The set of types is arbitrary, and the parameter is allowed to be discrete or continuous. Assuming a supercritical branching part with primitive first moments and finite second moments, we prove propositions on the mean square convergence and the almost sure convergence of normalized averaging processes associated with the immigration-branching process.


1978 ◽  
Vol 48 ◽  
pp. 227-228
Author(s):  
Y. Requième

In spite of important delays in the initial planning, the full automation of the Bordeaux meridian circle is progressing well and will be ready for regular observations by the middle of the next year. It is expected that the mean square error for one observation will be about ±0.”10 in the two coordinates for declinations up to 87°.


2003 ◽  
Vol 14 (3) ◽  
pp. 265-268 ◽  
Author(s):  
Maurizio Magarini ◽  
Arnaldo Spalvieri ◽  
Guido Tartara

2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


Sign in / Sign up

Export Citation Format

Share Document