scholarly journals ON THE POSITION OF NODES OF PLANE CURVES

Author(s):  
CÉSAR LOZANO HUERTA ◽  
TIM RYAN

The Severi variety $V_{d,n}$ of plane curves of a given degree $d$ and exactly $n$ nodes admits a map to the Hilbert scheme $\mathbb{P}^{2[n]}$ of zero-dimensional subschemes of $\mathbb{P}^{2}$ of degree $n$ . This map assigns to every curve $C\in V_{d,n}$ its nodes. For some $n$ , we consider the image under this map of many known divisors of the Severi variety and its partial compactification. We compute the divisor classes of such images in $\text{Pic}(\mathbb{P}^{2[n]})$ and provide enumerative numbers of nodal curves. We also answer directly a question of Diaz–Harris [‘Geometry of the Severi variety’, Trans. Amer. Math. Soc.309 (1988), 1–34] about whether the canonical class of the Severi variety is effective.

2015 ◽  
Vol 152 (1) ◽  
pp. 115-151 ◽  
Author(s):  
Florian Block ◽  
Lothar Göttsche

The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with ${\it\delta}$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $y$, which are conjecturally equal, for large $d$. At $y=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a tropical description of the refined Severi degrees, in terms of a refined tropical curve count for all toric surfaces. We also refine the equivalent count of floor diagrams for Hirzebruch and rational ruled surfaces. Our description implies that, for fixed ${\it\delta}$, the refined Severi degrees are polynomials in $d$ and $y$, for large $d$. As a consequence, we show that, for ${\it\delta}\leqslant 10$ and all $d\geqslant {\it\delta}/2+1$, both refinements of Göttsche and Shende agree and equal our refined counts of tropical curves and floor diagrams.


2019 ◽  
Vol 19 (4) ◽  
pp. 555-572 ◽  
Author(s):  
Shinzo Bannai ◽  
Taketo Shirane

Abstract To study the splitting of nodal plane curves with respect to contact conics, we define the splitting type of such curves and show that it can be used as an invariant to distinguish the embedded topology of plane curves. We also give a criterion to determine the splitting type in terms of the configuration of the nodes and tangent points. As an application, we construct sextics and contact conics with prescribed splitting types, which give rise to new Zariski-triples.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with $\delta$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $q$, which are conjecturally equal, for large $d$. At $q=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a combinatorial description of the refined Severi degrees, in terms of a $q$-analog count of Brugallé and Mikhalkin's floor diagrams. Our description implies that, for fixed $\delta$, the refined Severi degrees are polynomials in $d$ and $q$, for large $d$. As a consequence, we show that, for $\delta \leq 4$ and all $d$, both refinements of Göttsche and Shende agree and equal our $q$-count of floor diagrams. Le degré de Severi est le degré de la variété de Severi paramétrisant les courbes planes de degré $d$ à $\delta$ nœuds. Récemment, Göttsche et Shende ont donné deux raffinements des degrés de Severi, polynomiaux en la variable $q$, qui sont conjecturalement égaux pour $d$ assez grand. Pour $q=1$, un des ces raffinements, le degré de Severi relatif, se spécialise en le degré de Severi (non relatif). Nous donnons une description combinatoire des degrés de Severi raffinés, en fonction d'un comptage $q$-analogue des "floor diagrams'' de Brugallé et Mikhalkin. Notre description implique que, pour $\delta$ fixé, les degrés de Severi raffinés sont polynomiaux en $d$ et $q$, pour $d$ grand. On montre que, par conséquent, pour $\delta \leq 4$ et pour tout $d$, les deux raffinements de Göttsche et Shende coïncident et sont égaux à notre $q$-analogue de "floor diagrams''.


2003 ◽  
Vol 171 ◽  
pp. 51-83 ◽  
Author(s):  
Sébastien Guffroy

AbstractSince J.Wahl ([27]), it is known that degree d plane curves having some fixed numbers of nodes and cusps as its only singularities can be represented by a scheme, let say H, which can be singular. In Wahl’s example, H is singular along a subscheme F but the induced reduced scheme Hred is smooth along F. In this work, we construct explicitly a family of plane curves with nodes and cusps which are represented by singular points of Hred.To this end, we begin to show that the Hilbert scheme of smooth and connected space curves of degree 12 and genus 15 is irreducible and generically smooth. It follows that it is singular along a hypersurface (3.10). This example is minimal in the sense that the Hilbert scheme of smooth and connected space curves is regular in codimension 1 for d < 12 (B.2). Finally we construct our plane curves from the space curves represented by points of this hypersurface (4.7).


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience According to the Göttsche conjecture (now a theorem), the degree $N^{d, \delta}$ of the Severi variety of plane curves of degree $d$ with $\delta$ nodes is given by a polynomial in $d$, provided $d$ is large enough. These "node polynomials'' $N_{\delta} (d)$ were determined by Vainsencher and Kleiman―Piene for $\delta \leq 6$ and $\delta \leq 8$, respectively. Building on ideas of Fomin and Mikhalkin, we develop an explicit algorithm for computing all node polynomials, and use it to compute $N_{\delta} (d)$ for $\delta \leq 14$. Furthermore, we improve the threshold of polynomiality and verify Göttsche's conjecture on the optimal threshold up to $\delta \leq 14$. We also determine the first 9 coefficients of $N_{\delta} (d)$, for general $\delta$, settling and extending a 1994 conjecture of Di Francesco and Itzykson. Selon la Conjecture de Göttsche (maintenant un Théorème), le degré $N^{d, \delta}$ de la variété de Severi des courbes planes de degré $d$ avec $\delta$ noeuds est donné par un polynôme en $d$, pour $d$ assez grand. Ces $\textit{polynômes de nœuds}$ $N_{\delta} (d)$ ont été déterminés par Vainsencher et Kleiman―Piene pour $\delta \leq 6$ et $\delta \leq 8$, respectivement. S'appuyant sur les idées de Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de nœuds, et l'utilisons pour calculer $N_{\delta} (d)$, pour $\delta \leq 14$. De plus, nous améliorons le seuil de polynomialité et vérifions la Conjecture de Göttsche sur le seuil optimal jusqu'à $\delta \leq 14$. Nous déterminons aussi les 9 premiers coéfficients de $N_{\delta} (d)$, pour un $\delta$ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience We generalize the recent work of Fomin and Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves which, in addition, satisfy tangency conditions of given orders with respect to a given line. We show that the degrees of these varieties, appropriately rescaled, are given by a combinatorially defined ``relative node polynomial'' in the tangency orders, provided the latter are large enough. We describe a method to compute these polynomials for arbitrary δ , and use it to present explicit formulas for δ ≤ 6. We also give a threshold for polynomiality, and compute the first few leading terms for any δ . Nous généralisons les travaux récents de Fomin et Mikhalkin sur des formules polynomiales pour les degrés de Severi. Le degré de la variété de Severi des courbes planes de degré d et à δ nœuds est donné par un polynôme en d , pour δ fixé et d assez grand. Nous étendons ce résultat aux variétés de Severi généralisées paramétrant les courbes planes et qui, en outre, satisfont à des conditions de tangence d'ordres donnés avec une droite fixée. Nous montrons que les degrés de ces variétés, rééchelonnés de manière appropriée, sont donnés par un ``polynôme de noeud relatif'', défini combinatoirement, en les ordres de tangence, dès que ceux-ci sont assez grands. Nous décrivons une méthode pour calculer ces polynômes pour delta arbitraire, et l'utilisons pour présenter des formules explicites pour δ ≤ 6 . Nous donnons aussi un seuil pour la polynomialité, et calculons les premiers termes dominants pour tout δ .


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Florian Block

International audience The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed $\delta$, Severi degrees are eventually polynomial in $d$. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". Our strategy is to use tropical geometry to express Severi degrees in terms of Brugallé and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope. La variété de Severi paramétrise les courbes planes de degré $d$ avec $\delta$ nœuds. Son degré s'appelle le degré de Severi. Pour $d$ assez grand, les degrés de Severi coïncident avec les invariants de Gromov-Witten de $\mathbb{CP}^2$. Fomin et Mikhalkin (2009) ont prouvé une conjecture de 1995 que pour $\delta$ fixé, les degrés de Severi sont à terme des polynômes en $d$. Nous étudions les variétés de Severi correspondant à une large famille de surfaces toriques. Nous prouvons le résultat analogue que les degrés de Severi sont à terme des fonctions polynomiales du multidegré. De manière plus surprenante, nous montrons que les degrés de Severi sont à terme des polynômes en tant que "fonction de la surface''. Notre stratégie est d'utiliser la géométrie tropicale pour exprimer les degrés de Severi en fonction des "floor diagrams" de Brugallé et Mikhalkin, et d'utiliser ces objets combinatoires en détail. Un autre ingrédient important de la preuve est la polynomialité du volume discret d'un polytope face-unimodulaire variable.


2019 ◽  
Vol 2019 (749) ◽  
pp. 161-200 ◽  
Author(s):  
Andreas Leopold Knutsen ◽  
Margherita Lelli-Chiesa ◽  
Giovanni Mongardi

Abstract Severi varieties and Brill–Noether theory of curves on K3 surfaces are well understood. Yet, quite little is known for curves on abelian surfaces. Given a general abelian surface S with polarization L of type {(1,n)} , we prove nonemptiness and regularity of the Severi variety parametrizing δ-nodal curves in the linear system {|L|} for {0\leq\delta\leq n-1=p-2} (here p is the arithmetic genus of any curve in {|L|} ). We also show that a general genus g curve having as nodal model a hyperplane section of some {(1,n)} -polarized abelian surface admits only finitely many such models up to translation; moreover, any such model lies on finitely many {(1,n)} -polarized abelian surfaces. Under certain assumptions, a conjecture of Dedieu and Sernesi is proved concerning the possibility of deforming a genus g curve in S equigenerically to a nodal curve. The rest of the paper deals with the Brill–Noether theory of curves in {|L|} . It turns out that a general curve in {|L|} is Brill–Noether general. However, as soon as the Brill–Noether number is negative and some other inequalities are satisfied, the locus {|L|^{r}_{d}} of smooth curves in {|L|} possessing a {g^{r}_{d}} is nonempty and has a component of the expected dimension. As an application, we obtain the existence of a component of the Brill–Noether locus {{\mathcal{M}}^{r}_{p,d}} having the expected codimension in the moduli space of curves {{\mathcal{M}}_{p}} . For {r=1} , the results are generalized to nodal curves.


Sign in / Sign up

Export Citation Format

Share Document