scholarly journals Universal Polynomials for Severi Degrees of Toric Surfaces

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Florian Block

International audience The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed $\delta$, Severi degrees are eventually polynomial in $d$. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". Our strategy is to use tropical geometry to express Severi degrees in terms of Brugallé and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope. La variété de Severi paramétrise les courbes planes de degré $d$ avec $\delta$ nœuds. Son degré s'appelle le degré de Severi. Pour $d$ assez grand, les degrés de Severi coïncident avec les invariants de Gromov-Witten de $\mathbb{CP}^2$. Fomin et Mikhalkin (2009) ont prouvé une conjecture de 1995 que pour $\delta$ fixé, les degrés de Severi sont à terme des polynômes en $d$. Nous étudions les variétés de Severi correspondant à une large famille de surfaces toriques. Nous prouvons le résultat analogue que les degrés de Severi sont à terme des fonctions polynomiales du multidegré. De manière plus surprenante, nous montrons que les degrés de Severi sont à terme des polynômes en tant que "fonction de la surface''. Notre stratégie est d'utiliser la géométrie tropicale pour exprimer les degrés de Severi en fonction des "floor diagrams" de Brugallé et Mikhalkin, et d'utiliser ces objets combinatoires en détail. Un autre ingrédient important de la preuve est la polynomialité du volume discret d'un polytope face-unimodulaire variable.

2015 ◽  
Vol 152 (1) ◽  
pp. 115-151 ◽  
Author(s):  
Florian Block ◽  
Lothar Göttsche

The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with ${\it\delta}$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $y$, which are conjecturally equal, for large $d$. At $y=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a tropical description of the refined Severi degrees, in terms of a refined tropical curve count for all toric surfaces. We also refine the equivalent count of floor diagrams for Hirzebruch and rational ruled surfaces. Our description implies that, for fixed ${\it\delta}$, the refined Severi degrees are polynomials in $d$ and $y$, for large $d$. As a consequence, we show that, for ${\it\delta}\leqslant 10$ and all $d\geqslant {\it\delta}/2+1$, both refinements of Göttsche and Shende agree and equal our refined counts of tropical curves and floor diagrams.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience We generalize the recent work of Fomin and Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves which, in addition, satisfy tangency conditions of given orders with respect to a given line. We show that the degrees of these varieties, appropriately rescaled, are given by a combinatorially defined ``relative node polynomial'' in the tangency orders, provided the latter are large enough. We describe a method to compute these polynomials for arbitrary δ , and use it to present explicit formulas for δ ≤ 6. We also give a threshold for polynomiality, and compute the first few leading terms for any δ . Nous généralisons les travaux récents de Fomin et Mikhalkin sur des formules polynomiales pour les degrés de Severi. Le degré de la variété de Severi des courbes planes de degré d et à δ nœuds est donné par un polynôme en d , pour δ fixé et d assez grand. Nous étendons ce résultat aux variétés de Severi généralisées paramétrant les courbes planes et qui, en outre, satisfont à des conditions de tangence d'ordres donnés avec une droite fixée. Nous montrons que les degrés de ces variétés, rééchelonnés de manière appropriée, sont donnés par un ``polynôme de noeud relatif'', défini combinatoirement, en les ordres de tangence, dès que ceux-ci sont assez grands. Nous décrivons une méthode pour calculer ces polynômes pour delta arbitraire, et l'utilisons pour présenter des formules explicites pour δ ≤ 6 . Nous donnons aussi un seuil pour la polynomialité, et calculons les premiers termes dominants pour tout δ .


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with $\delta$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $q$, which are conjecturally equal, for large $d$. At $q=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a combinatorial description of the refined Severi degrees, in terms of a $q$-analog count of Brugallé and Mikhalkin's floor diagrams. Our description implies that, for fixed $\delta$, the refined Severi degrees are polynomials in $d$ and $q$, for large $d$. As a consequence, we show that, for $\delta \leq 4$ and all $d$, both refinements of Göttsche and Shende agree and equal our $q$-count of floor diagrams. Le degré de Severi est le degré de la variété de Severi paramétrisant les courbes planes de degré $d$ à $\delta$ nœuds. Récemment, Göttsche et Shende ont donné deux raffinements des degrés de Severi, polynomiaux en la variable $q$, qui sont conjecturalement égaux pour $d$ assez grand. Pour $q=1$, un des ces raffinements, le degré de Severi relatif, se spécialise en le degré de Severi (non relatif). Nous donnons une description combinatoire des degrés de Severi raffinés, en fonction d'un comptage $q$-analogue des "floor diagrams'' de Brugallé et Mikhalkin. Notre description implique que, pour $\delta$ fixé, les degrés de Severi raffinés sont polynomiaux en $d$ et $q$, pour $d$ grand. On montre que, par conséquent, pour $\delta \leq 4$ et pour tout $d$, les deux raffinements de Göttsche et Shende coïncident et sont égaux à notre $q$-analogue de "floor diagrams''.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience Develin and Sturmfels showed that regular triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$. In this paper, we show that any triangulation of $\Delta_{n-1} \times \Delta_{d-1}$ encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes. Develin et Sturmfels ont montré que les triangulations de $\Delta_{n-1} \times \Delta_{d-1}$ peuvent être considérées comme des polytopes tropicaux. Les matroïdes orientés tropicaux ont été définis par Ardila et Develin, et ils ont été conjecturés être en bijection avec les subdivisions de $\Delta_{n-1} \times \Delta_{d-1}$. Dans cet article, nous montrons que toute triangulation de $\Delta_{n-1} \times \Delta_{d-1}$ encode un matroïde orienté tropical. De plus, nous proposons une nouvelle classe d'objets combinatoires qui peuvent décrire toutes les subdivisions d'une plus grande classe de polytopes.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lily Yen

International audience The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for matchings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric joint distribution continues to hold for arc-coloured permutations. As in Marberg's recent work, but through a different interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured permutations according to size n are rational functions. We use the interpretation to automate the generation of these rational series for both noncrossing and nonnesting coloured set partitions and permutations. <begin>otherlanguage*</begin>french L'équidistribution de plusieurs statistiques décrites en termes d'emboitements et de chevauchements d'arcs s'observes dans plusieurs familles d'objects combinatoires, tels que les couplages, partitions d'ensembles, permutations et graphes étiquetés. L'involution échangeant le nombre d'emboitements et de chevauchements dans les partitions d'ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l'involution similaire dans les permutations due à Burrill, Mishna et Post, requièrent d'utiliser des objets de type tableaux. Récemment, Chen et Guo pour les couplages, et Marberg pour les partitions d'ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés coloriés. Nous démontrons que la propriété d'équidistribution s'observe est aussi vraie dans le cas de permutations aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements, comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calculer ces fonctions rationnelles pour les partitions d'ensembles et les permutations coloriées sans emboitement ou sans chevauchement. <end>otherlanguage*</end>


Author(s):  
RENZO CAVALIERI ◽  
PAUL JOHNSON ◽  
HANNAH MARKWIG ◽  
DHRUV RANGANATHAN

We study the stationary descendant Gromov–Witten theory of toric surfaces by combining and extending a range of techniques – tropical curves, floor diagrams and Fock spaces. A correspondence theorem is established between tropical curves and descendant invariants on toric surfaces using maximal toric degenerations. An intermediate degeneration is then shown to give rise to floor diagrams, giving a geometric interpretation of this well-known bookkeeping tool in tropical geometry. In the process, we extend floor diagram techniques to include descendants in arbitrary genus. These floor diagrams are then used to connect tropical curve counting to the algebra of operators on the bosonic Fock space, and are showno coincide with the Feynman diagrams of appropriate operators. This extends work of a number of researchers, including Block–Göttsche, Cooper–Pandharipande and Block–Gathmann–Markwig.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Anders Claesson ◽  
Svante Linusson

International audience We show that there are $n!$ matchings on $2n$ points without, so called, left (neighbor) nestings. We also define a set of naturally labelled $(2+2)$-free posets, and show that there are $n!$ such posets on $n$ elements. Our work was inspired by Bousquet-Mélou, Claesson, Dukes and Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884―909]. They gave bijections between four classes of combinatorial objects: matchings with no neighbor nestings (due to Stoimenow), unlabelled $(2+2)$-free posets, permutations avoiding a specific pattern, and so called ascent sequences. We believe that certain statistics on our matchings and posets could generalize the work of Bousquet-Mélou et al. and we make a conjecture to that effect. We also identify natural subsets of matchings and posets that are equinumerous to the class of unlabeled $(2+2)$-free posets. We give bijections that show the equivalence of (neighbor) restrictions on nesting arcs with (neighbor) restrictions on crossing arcs. These bijections are thought to be of independent interest. One of the bijections maps via certain upper-triangular integer matrices that have recently been studied by Dukes and Parviainen [Electron. J. Combin. 17 (2010) #R53]. Nous montrons qu'il y a $n!$ couplages sur $2n$ points sans emboîtement (de voisins) à gauche. Nous définissons aussi un ensemble d'EPO (ensembles partiellement ordonnés) sans motif $(2+2)$ naturellement étiquetés, et montrons qu'il y a $n!$ tels EPO sur $n$ éléments. Notre travail a été inspiré par Bousquet-Mélou, Claesson, Dukes et Kitaev [J. Combin. Theory Ser. A. 117 (2010) 884―909]. Ces auteurs donnent des bijections entre quatre classes d'objets combinatoires: couplages sans emboîtement de voisins (dû à Stoimenow), EPO sans motif $(2+2)$ non étiquetés, permutations évitant un certain motif, et des objets appelés suites à montées. Nous pensons que certaines statistiques sur nos couplages et nos EPO pourraient généraliser le travail de Bousquet-Mélou et al. et nous proposons une conjecture à ce sujet. Nous identifions aussi des sous-ensembles naturels de couplages et d'EPO qui sont énumérés par la même séquence que la classe des EPO sans motif $(2+2)$ non étiquetés. Nous donnons des bijections qui démontrent l'équivalence entre les restrictions sur les emboîtements (d'arcs voisins) et les restrictions sur les croisements (d'arcs voisins). Nous pensons que ces bijections présentent un intérêt propre. L'une de ces bijections passe par certaines matrices triangulaires supérieures à coefficients entiers qui ont été récemment étudiées par Dukes et Parviainen [Electron. J. Combin. 17 (2010) #R53].


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Fu Liu

International audience Based on results by Brugallé and Mikhalkin, Fomin and Mikhalkin give formulas for computing classical Severi degrees Nd,δ using long-edge graphs. In 2012, Block, Colley and Kennedy considered the logarithmic versionof a special function associated to long-edge graphs which appeared in Fomin-Mikhalkin’s formula, and conjecturedit to be linear. They have since proved their conjecture. At the same time, motivated by their conjecture, we considera special multivariate function associated to long-edge graphs that generalizes their function. The main result of thispaper is that the multivariate function we define is always linear.The first application of our linearity result is that by applying it to classical Severi degrees, we recover quadraticity of Qd,δ and a bound δ for the threshold of polynomiality ofNd,δ.Next, in joint work with Osserman, we apply thelinearity result to a special family of toric surfaces and obtain universal polynomial results having connections to the Göttsche-Yau-Zaslow formula. As a result, we provide combinatorial formulas for the two unidentified power series B1(q) and B2(q) appearing in the Göttsche-Yau-Zaslow formula.The proof of our linearity result is completely combinatorial. We defineτ-graphs which generalize long-edge graphs,and a closely related family of combinatorial objects we call (τ,n)-words. By introducing height functions and aconcept of irreducibility, we describe ways to decompose certain families of (τ,n)-words into irreducible words,which leads to the desired results.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Kevin Dilks

International audience Baxter numbers are known to count several families of combinatorial objects, all of which come equipped with natural involutions. In this paper, we add a combinatorial family to the list, and show that the known bijections between these objects respect these involutions. We also give a formula for the number of objects fixed under this involution, showing that it is an instance of Stembridge's "$q=-1$ phenomenon''. Les nombres Baxter comptent plusieurs familles d'objets combinatoires, qui sont tous équipés avec des involutions naturels. Dans ce papier, nous ajoutons une famille combinatoire à la liste, et nous montrons que les bijections connus entre ces objets respectent ces involutions. En plus, nous donnons une formule pour le nombre d'objets fixés par cette involution et nous montrons qu'elle est une instance du "phénomène $q =-1$'' de Stembridge.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience According to the Göttsche conjecture (now a theorem), the degree $N^{d, \delta}$ of the Severi variety of plane curves of degree $d$ with $\delta$ nodes is given by a polynomial in $d$, provided $d$ is large enough. These "node polynomials'' $N_{\delta} (d)$ were determined by Vainsencher and Kleiman―Piene for $\delta \leq 6$ and $\delta \leq 8$, respectively. Building on ideas of Fomin and Mikhalkin, we develop an explicit algorithm for computing all node polynomials, and use it to compute $N_{\delta} (d)$ for $\delta \leq 14$. Furthermore, we improve the threshold of polynomiality and verify Göttsche's conjecture on the optimal threshold up to $\delta \leq 14$. We also determine the first 9 coefficients of $N_{\delta} (d)$, for general $\delta$, settling and extending a 1994 conjecture of Di Francesco and Itzykson. Selon la Conjecture de Göttsche (maintenant un Théorème), le degré $N^{d, \delta}$ de la variété de Severi des courbes planes de degré $d$ avec $\delta$ noeuds est donné par un polynôme en $d$, pour $d$ assez grand. Ces $\textit{polynômes de nœuds}$ $N_{\delta} (d)$ ont été déterminés par Vainsencher et Kleiman―Piene pour $\delta \leq 6$ et $\delta \leq 8$, respectivement. S'appuyant sur les idées de Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de nœuds, et l'utilisons pour calculer $N_{\delta} (d)$, pour $\delta \leq 14$. De plus, nous améliorons le seuil de polynomialité et vérifions la Conjecture de Göttsche sur le seuil optimal jusqu'à $\delta \leq 14$. Nous déterminons aussi les 9 premiers coéfficients de $N_{\delta} (d)$, pour un $\delta$ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.


Sign in / Sign up

Export Citation Format

Share Document