scholarly journals Computing Node Polynomials for Plane Curves

2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience According to the Göttsche conjecture (now a theorem), the degree $N^{d, \delta}$ of the Severi variety of plane curves of degree $d$ with $\delta$ nodes is given by a polynomial in $d$, provided $d$ is large enough. These "node polynomials'' $N_{\delta} (d)$ were determined by Vainsencher and Kleiman―Piene for $\delta \leq 6$ and $\delta \leq 8$, respectively. Building on ideas of Fomin and Mikhalkin, we develop an explicit algorithm for computing all node polynomials, and use it to compute $N_{\delta} (d)$ for $\delta \leq 14$. Furthermore, we improve the threshold of polynomiality and verify Göttsche's conjecture on the optimal threshold up to $\delta \leq 14$. We also determine the first 9 coefficients of $N_{\delta} (d)$, for general $\delta$, settling and extending a 1994 conjecture of Di Francesco and Itzykson. Selon la Conjecture de Göttsche (maintenant un Théorème), le degré $N^{d, \delta}$ de la variété de Severi des courbes planes de degré $d$ avec $\delta$ noeuds est donné par un polynôme en $d$, pour $d$ assez grand. Ces $\textit{polynômes de nœuds}$ $N_{\delta} (d)$ ont été déterminés par Vainsencher et Kleiman―Piene pour $\delta \leq 6$ et $\delta \leq 8$, respectivement. S'appuyant sur les idées de Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de nœuds, et l'utilisons pour calculer $N_{\delta} (d)$, pour $\delta \leq 14$. De plus, nous améliorons le seuil de polynomialité et vérifions la Conjecture de Göttsche sur le seuil optimal jusqu'à $\delta \leq 14$. Nous déterminons aussi les 9 premiers coéfficients de $N_{\delta} (d)$, pour un $\delta$ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with $\delta$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $q$, which are conjecturally equal, for large $d$. At $q=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a combinatorial description of the refined Severi degrees, in terms of a $q$-analog count of Brugallé and Mikhalkin's floor diagrams. Our description implies that, for fixed $\delta$, the refined Severi degrees are polynomials in $d$ and $q$, for large $d$. As a consequence, we show that, for $\delta \leq 4$ and all $d$, both refinements of Göttsche and Shende agree and equal our $q$-count of floor diagrams. Le degré de Severi est le degré de la variété de Severi paramétrisant les courbes planes de degré $d$ à $\delta$ nœuds. Récemment, Göttsche et Shende ont donné deux raffinements des degrés de Severi, polynomiaux en la variable $q$, qui sont conjecturalement égaux pour $d$ assez grand. Pour $q=1$, un des ces raffinements, le degré de Severi relatif, se spécialise en le degré de Severi (non relatif). Nous donnons une description combinatoire des degrés de Severi raffinés, en fonction d'un comptage $q$-analogue des "floor diagrams'' de Brugallé et Mikhalkin. Notre description implique que, pour $\delta$ fixé, les degrés de Severi raffinés sont polynomiaux en $d$ et $q$, pour $d$ grand. On montre que, par conséquent, pour $\delta \leq 4$ et pour tout $d$, les deux raffinements de Göttsche et Shende coïncident et sont égaux à notre $q$-analogue de "floor diagrams''.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florian Block

International audience We generalize the recent work of Fomin and Mikhalkin on polynomial formulas for Severi degrees. The degree of the Severi variety of plane curves of degree d and δ nodes is given by a polynomial in d, provided δ is fixed and d is large enough. We extend this result to generalized Severi varieties parametrizing plane curves which, in addition, satisfy tangency conditions of given orders with respect to a given line. We show that the degrees of these varieties, appropriately rescaled, are given by a combinatorially defined ``relative node polynomial'' in the tangency orders, provided the latter are large enough. We describe a method to compute these polynomials for arbitrary δ , and use it to present explicit formulas for δ ≤ 6. We also give a threshold for polynomiality, and compute the first few leading terms for any δ . Nous généralisons les travaux récents de Fomin et Mikhalkin sur des formules polynomiales pour les degrés de Severi. Le degré de la variété de Severi des courbes planes de degré d et à δ nœuds est donné par un polynôme en d , pour δ fixé et d assez grand. Nous étendons ce résultat aux variétés de Severi généralisées paramétrant les courbes planes et qui, en outre, satisfont à des conditions de tangence d'ordres donnés avec une droite fixée. Nous montrons que les degrés de ces variétés, rééchelonnés de manière appropriée, sont donnés par un ``polynôme de noeud relatif'', défini combinatoirement, en les ordres de tangence, dès que ceux-ci sont assez grands. Nous décrivons une méthode pour calculer ces polynômes pour delta arbitraire, et l'utilisons pour présenter des formules explicites pour δ ≤ 6 . Nous donnons aussi un seuil pour la polynomialité, et calculons les premiers termes dominants pour tout δ .


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Florian Block

International audience The Severi variety parametrizes plane curves of degree $d$ with $\delta$ nodes. Its degree is called the Severi degree. For large enough $d$, the Severi degrees coincide with the Gromov-Witten invariants of $\mathbb{CP}^2$. Fomin and Mikhalkin (2009) proved the 1995 conjecture that for fixed $\delta$, Severi degrees are eventually polynomial in $d$. In this paper, we study the Severi varieties corresponding to a large family of toric surfaces. We prove the analogous result that the Severi degrees are eventually polynomial as a function of the multidegree. More surprisingly, we show that the Severi degrees are also eventually polynomial "as a function of the surface". Our strategy is to use tropical geometry to express Severi degrees in terms of Brugallé and Mikhalkin's floor diagrams, and study those combinatorial objects in detail. An important ingredient in the proof is the polynomiality of the discrete volume of a variable facet-unimodular polytope. La variété de Severi paramétrise les courbes planes de degré $d$ avec $\delta$ nœuds. Son degré s'appelle le degré de Severi. Pour $d$ assez grand, les degrés de Severi coïncident avec les invariants de Gromov-Witten de $\mathbb{CP}^2$. Fomin et Mikhalkin (2009) ont prouvé une conjecture de 1995 que pour $\delta$ fixé, les degrés de Severi sont à terme des polynômes en $d$. Nous étudions les variétés de Severi correspondant à une large famille de surfaces toriques. Nous prouvons le résultat analogue que les degrés de Severi sont à terme des fonctions polynomiales du multidegré. De manière plus surprenante, nous montrons que les degrés de Severi sont à terme des polynômes en tant que "fonction de la surface''. Notre stratégie est d'utiliser la géométrie tropicale pour exprimer les degrés de Severi en fonction des "floor diagrams" de Brugallé et Mikhalkin, et d'utiliser ces objets combinatoires en détail. Un autre ingrédient important de la preuve est la polynomialité du volume discret d'un polytope face-unimodulaire variable.


2015 ◽  
Vol 152 (1) ◽  
pp. 115-151 ◽  
Author(s):  
Florian Block ◽  
Lothar Göttsche

The Severi degree is the degree of the Severi variety parametrizing plane curves of degree $d$ with ${\it\delta}$ nodes. Recently, Göttsche and Shende gave two refinements of Severi degrees, polynomials in a variable $y$, which are conjecturally equal, for large $d$. At $y=1$, one of the refinements, the relative Severi degree, specializes to the (non-relative) Severi degree. We give a tropical description of the refined Severi degrees, in terms of a refined tropical curve count for all toric surfaces. We also refine the equivalent count of floor diagrams for Hirzebruch and rational ruled surfaces. Our description implies that, for fixed ${\it\delta}$, the refined Severi degrees are polynomials in $d$ and $y$, for large $d$. As a consequence, we show that, for ${\it\delta}\leqslant 10$ and all $d\geqslant {\it\delta}/2+1$, both refinements of Göttsche and Shende agree and equal our refined counts of tropical curves and floor diagrams.


2008 ◽  
Vol Volume 9, 2007 Conference in... ◽  
Author(s):  
Guy Wallet

International audience In this work, we give a presentation of the so-called Harthong-Reeb line. Only based on integer numbers, this numerical system has the striking property to be roughly equivalent to the continuous real line. Its definition requires the use of a natural number w which is infinitely large in the meaning of nonstandard analysis. Following the idea of G. Reeb, we show how to implement in this framework the Euler scheme. Then we get an exact representation in the Harthong-Reeb line of many real functions like the exponential. Since this representation is given with the help of an explicit algorithm, it is natural to wonder about the global constructivity of this numerical system. In the conclusion, we discuss this last point and we outline some new directions for getting analogous systems which would be more constructive ans ce travail, nous donnons une présentation de la droite dite d’Harthong-Reeb. Il s’agit d’un système numérique uniquement basé sur les nombres entiers et dont la propriété frappante est qu’il est à peu près équivalent à la droite réelle continue. Sa définition nécessite l’utilisation d’un nombre naturel w qui est infiniment grand au sens de l’analyse nonstandard. Suivant l’idée de G. Reeb, nous montrons comment on peut implémenter le schéma d’Euler dans ce cadre. Alors, on obtient une représentation exacte dans la droite d’Harthong-Reeb de nombreuses fonctions réelles comme la fonction exponentielle. Puisque cette représentation est donnée au moyen d’un algorithme explicite, il est naturel de s’interroger sur la constructivité globale de ce système numérique. Dans la conclusion, nous discutons ce dernier point et nous esquissons de nouvelles directions pour obtenir des systèmes analogues dotés d’une meilleure constructivité.


2011 ◽  
Vol 18 (4) ◽  
pp. 621-643 ◽  
Author(s):  
Florian Block
Keyword(s):  

Author(s):  
CÉSAR LOZANO HUERTA ◽  
TIM RYAN

The Severi variety $V_{d,n}$ of plane curves of a given degree $d$ and exactly $n$ nodes admits a map to the Hilbert scheme $\mathbb{P}^{2[n]}$ of zero-dimensional subschemes of $\mathbb{P}^{2}$ of degree $n$ . This map assigns to every curve $C\in V_{d,n}$ its nodes. For some $n$ , we consider the image under this map of many known divisors of the Severi variety and its partial compactification. We compute the divisor classes of such images in $\text{Pic}(\mathbb{P}^{2[n]})$ and provide enumerative numbers of nodal curves. We also answer directly a question of Diaz–Harris [‘Geometry of the Severi variety’, Trans. Amer. Math. Soc.309 (1988), 1–34] about whether the canonical class of the Severi variety is effective.


Author(s):  
C. Claire Thomson

Building on the picture of post-war Anglo-Danish documentary collaboration established in the previous chapter, this chapter examines three cases of international collaboration in which Dansk Kulturfilm and Ministeriernes Filmudvalg were involved in the late 1940s and 1950s. They Guide You Across (Ingolf Boisen, 1949) was commissioned to showcase Scandinavian cooperation in the realm of aviation (SAS) and was adopted by the newly-established United Nations Film Board. The complexities of this film’s production, funding and distribution are illustrative of the activities of the UN Film Board in its first years of operation. The second case study considers Alle mine Skibe (All My Ships, Theodor Christensen, 1951) as an example of a film commissioned and funded under the auspices of the Marshall Plan. This US initiative sponsored informational films across Europe, emphasising national solutions to post-war reconstruction. The third case study, Bent Barfod’s animated film Noget om Norden (Somethin’ about Scandinavia, 1956) explains Nordic cooperation for an international audience, but ironically exposed some gaps in inter-Nordic collaboration in the realm of film.


Author(s):  
Alistair Fox

The conclusion reaffirms the essential role played by cinema generally, and the coming-of-age genre in particular, in the process of national identity formation, because of its effectiveness in facilitating self-recognition and self-experience through a process of triangulation made possible, for the most part, by a dialogue with some of the nation’s most iconic works of literature. This section concludes by point out the danger posed, however, by an observable trend toward generic standardization in New Zealand films motivated by a desire to appeal to an international audience out of consideration for the financial returns expected by funding bodies under current regimes.


This collection of essays, drawn from a three-year AHRC research project, provides a detailed context for the history of early cinema in Scotland from its inception in 1896 till the arrival of sound in the early 1930s. It details the movement from travelling fairground shows to the establishment of permanent cinemas, and from variety and live entertainment to the dominance of the feature film. It addresses the promotion of cinema as a socially ‘useful’ entertainment, and, distinctively, it considers the early development of cinema in small towns as well as in larger cities. Using local newspapers and other archive sources, it details the evolution and the diversity of the social experience of cinema, both for picture goers and for cinema staff. In production, it examines the early attempts to establish a feature film production sector, with a detailed production history of Rob Roy (United Films, 1911), and it records the importance, both for exhibition and for social history, of ‘local topicals’. It considers the popularity of Scotland as an imaginary location for European and American films, drawing their popularity from the international audience for writers such as Walter Scott and J.M. Barrie and the ubiquity of Scottish popular song. The book concludes with a consideration of the arrival of sound in Scittish cinemas. As an afterpiece, it offers an annotated filmography of Scottish-themed feature films from 1896 to 1927, drawing evidence from synopses and reviews in contemporary trade journals.


Sign in / Sign up

Export Citation Format

Share Document