Proofs, Snakes and Ladders

Dialogue ◽  
1974 ◽  
Vol 13 (4) ◽  
pp. 723-731 ◽  
Author(s):  
Alasdair Urquhart

Anyone who has worked at proving theorems of intuitionistic logic in a natural deduction system must have been struck by the way in which many logical theorems “prove themselves.” That is, proofs of many formulas can be read off from the syntactical structure of the formulas themselves. This observation suggests that perhaps a strong structural identity may underly this relation between formulas and their proofs. A formula can be considered as a tree structure composed of its subformulas (Frege 1879) and by the normal form theorem (Gentzen 1934) every formula has a normalized proof consisting of its subformulas. Might we not identify an intuitionistic theorem with (one of) its proof(s) in normal form?

1991 ◽  
Vol 56 (1) ◽  
pp. 129-149 ◽  
Author(s):  
Gunnar Stålmarck

In this paper we prove the strong normalization theorem for full first order classical N.D. (natural deduction)—full in the sense that all logical constants are taken as primitive. We also give a syntactic proof of the normal form theorem and (weak) normalization for the same system.The theorem has been stated several times, and some proofs appear in the literature. The first proof occurs in Statman [1], where full first order classical N.D. (with the elimination rules for ∨ and ∃ restricted to atomic conclusions) is embedded in a system for second order (propositional) intuitionistic N.D., for which a strong normalization theorem is proved using strongly impredicative methods.A proof of the normal form theorem and (weak) normalization theorem occurs in Seldin [1] as an extension of a proof of the same theorem for an N.D.-system for the intermediate logic called MH.The proof of the strong normalization theorem presented in this paper is obtained by proving that a certain kind of validity applies to all derivations in the system considered.The notion “validity” is adopted from Prawitz [2], where it is used to prove the strong normalization theorem for a restricted version of first order classical N.D., and is extended to cover the full system. Notions similar to “validity” have been used earlier by Tait (convertability), Girard (réducibilité) and Martin-Löf (computability).In Prawitz [2] the N.D. system is restricted in the sense that ∨ and ∃ are not treated as primitive logical constants, and hence the deductions can only be seen to be “natural” with respect to the other logical constants. To spell it out, the strong normalization theorem for the restricted version of first order classical N.D. together with the well-known results on the definability of the rules for ∨ and ∃ in the restricted system does not imply the normalization theorem for the full system.


2009 ◽  
Vol 86 (100) ◽  
pp. 27-34
Author(s):  
Mirjana Borisavljevic

Pairs of systems, which consist of a system of sequents and a natural deduction system for some part of intuitionistic logic, are considered. For each of these pairs of systems the property that the normalization theorem is a consequence of the cut-elimination theorem is presented.


2016 ◽  
Vol 45 (1) ◽  
Author(s):  
Mirjana Ilić

A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.


2007 ◽  
pp. 37-53
Author(s):  
Mirjana Borisavljevic

In a system of sequents for intuitionistic predicate logic a theorem, which corresponds to Prawitz?s Normal Form Theorem for natural deduction, are proved. In sequent derivations a special kind of cuts, maximum cuts, are defined. Maximum cuts from sequent derivations are connected with maximum segments from natural deduction derivations, i.e., sequent derivations without maximum cuts correspond to normal derivations in natural deduction. By that connection the theorem for the system of sequents (which correspond to Normal Form Theorem for natural deduction) will have the following form for each sequent derivation whose end sequent is ??A there is a sequent derivation without maximum cuts whose end sequent is ??A.


1982 ◽  
Vol 47 (3) ◽  
pp. 605-624 ◽  
Author(s):  
Douglas N. Hoover

AbstractWe show that every formula of Lω1P is equivalent to one which is a propositional combination of formulas with only one quantifier. It follows that the complete theory of a probability model is determined by the distribution of a family of random variables induced by the model. We characterize the class of distribution which can arise in such a way. We use these results together with a form of de Finetti’s theorem to prove an almost sure interpolation theorem for Lω1P.


1979 ◽  
Vol 44 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Victor Harnik

The central notion of this paper is that of a (conjunctive) game-sentence, i.e., a sentence of the formwhere the indices ki, ji range over given countable sets and the matrix conjuncts are, say, open -formulas. Such game sentences were first considered, independently, by Svenonius [19], Moschovakis [13]—[15] and Vaught [20]. Other references are [1], [3]—[5], [10]—[12]. The following normal form theorem was proved by Vaught (and, in less general forms, by his predecessors).Theorem 0.1. Let L = L0(R). For every -sentence ϕ there is an L0-game sentence Θ such that ⊨′ ∃Rϕ ↔ Θ.(A word about the notations: L0(R) denotes the language obtained from L0 by adding to it the sequence R of logical symbols which do not belong to L0; “⊨′α” means that α is true in all countable models.)0.1 can be restated as follows.Theorem 0.1′. For every-sentence ϕ there is an L0-game sentence Θ such that ⊨ϕ → Θ and for any-sentence ϕ if ⊨ϕ → ϕ and L′ ⋂ L ⊆ L0, then ⊨ Θ → ϕ.(We sketch the proof of the equivalence between 0.1 and 0.1′.0.1 implies 0.1′. This is obvious once we realize that game sentences and their negations satisfy the downward Löwenheim-Skolem theorem and hence, ⊨′α is equivalent to ⊨α whenever α is a boolean combination of and game sentences.


Sign in / Sign up

Export Citation Format

Share Document