scholarly journals Normalization as a consequence of cut elimination

2009 ◽  
Vol 86 (100) ◽  
pp. 27-34
Author(s):  
Mirjana Borisavljevic

Pairs of systems, which consist of a system of sequents and a natural deduction system for some part of intuitionistic logic, are considered. For each of these pairs of systems the property that the normalization theorem is a consequence of the cut-elimination theorem is presented.

Dialogue ◽  
1974 ◽  
Vol 13 (4) ◽  
pp. 723-731 ◽  
Author(s):  
Alasdair Urquhart

Anyone who has worked at proving theorems of intuitionistic logic in a natural deduction system must have been struck by the way in which many logical theorems “prove themselves.” That is, proofs of many formulas can be read off from the syntactical structure of the formulas themselves. This observation suggests that perhaps a strong structural identity may underly this relation between formulas and their proofs. A formula can be considered as a tree structure composed of its subformulas (Frege 1879) and by the normal form theorem (Gentzen 1934) every formula has a normalized proof consisting of its subformulas. Might we not identify an intuitionistic theorem with (one of) its proof(s) in normal form?


2016 ◽  
Vol 45 (1) ◽  
Author(s):  
Mirjana Ilić

A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.


2005 ◽  
Vol 70 (4) ◽  
pp. 1108-1126 ◽  
Author(s):  
Greg Restall ◽  
Francesco Paoli

AbstractIn this paper we introduce a new natural deduction system for the logic of lattices, and a number of extensions of lattice logic with different negation connectives. We provide the class of natural deduction proofs with both a standard inductive definition and a global graph-theoretical criterion for correctness, and we show how normalisation in this system corresponds to cut elimination in the sequent calculus for lattice logic. This natural deduction system is inspired both by Shoesmith and Smiley's multiple conclusion systems for classical logic and Girard's proofnets for linear logic.


2017 ◽  
Vol 101 (115) ◽  
pp. 75-98
Author(s):  
Mirjana Borisavljevic

The normalization theorem for the system of extended natural deduction will be proved as a consequence of the cut-elimination theorem, by using the connections between the system of extended natural deduction and a standard system of sequents.


2012 ◽  
Vol 5 (4) ◽  
pp. 720-730 ◽  
Author(s):  
BARTELD KOOI ◽  
ALLARD TAMMINGA

AbstractTaking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, we show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics.


Sign in / Sign up

Export Citation Format

Share Document