Probabilized Sequent Calculus and Natural Deduction System for Classical Logic

Author(s):  
Marija Boričić
2005 ◽  
Vol 70 (4) ◽  
pp. 1108-1126 ◽  
Author(s):  
Greg Restall ◽  
Francesco Paoli

AbstractIn this paper we introduce a new natural deduction system for the logic of lattices, and a number of extensions of lattice logic with different negation connectives. We provide the class of natural deduction proofs with both a standard inductive definition and a global graph-theoretical criterion for correctness, and we show how normalisation in this system corresponds to cut elimination in the sequent calculus for lattice logic. This natural deduction system is inspired both by Shoesmith and Smiley's multiple conclusion systems for classical logic and Girard's proofnets for linear logic.


2016 ◽  
Vol 45 (1) ◽  
Author(s):  
Mirjana Ilić

A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.


2018 ◽  
Vol 13 (3) ◽  
pp. 509-540 ◽  
Author(s):  
MINGHUI MA ◽  
AHTI-VEIKKO PIETARINEN

AbstractThis article investigates Charles Peirce’s development of logical calculi for classical propositional logic in 1880–1896. Peirce’s 1880 work on the algebra of logic resulted in a successful calculus for Boolean algebra. This calculus, denoted byPC, is here presented as a sequent calculus and not as a natural deduction system. It is shown that Peirce’s aim was to presentPCas a sequent calculus. The law of distributivity, which Peirce states in 1880, is proved using Peirce’s Rule, which is a residuation, inPC. The transitional systems of the algebra of the copula that Peirce develops since 1880 paved the way to the 1896 graphical system of the alpha graphs. It is shown how the rules of the alpha system reinterpret Boolean algebras, answering Peirce’s statement that logical graphs supply a new system of fundamental assumptions to logical algebra. A proof-theoretic analysis is given for the connection betweenPCand the alpha system.


2017 ◽  
Vol 23 (1) ◽  
pp. 83-104 ◽  
Author(s):  
В.О. Шангин

In the paper, we reconsider a precise definition of a natural deduction inference given by V. Smirnov. In refining the definition, we argue that all the other indirect rules of inference in a system can be considered as special cases of the implication introduction rule in a sense that if one of those rules can be applied then the implication introduction rule can be applied, either, but not vice versa. As an example, we use logics $I_{\langle\alpha, \beta\rangle}, \alpha, \beta \in \{0, 1, 2, 3,\dots \omega\}$, such that $I_{\langle 0, 0\rangle}$is propositional classical logic, presented by V. Popov. He uses these logics, in particular, a Hilbert-style calculus $HI_{\langle\alpha, \beta\rangle}, \alpha, \beta \in \{0, 1, 2, 3,\dots \omega\}$, for each logic in question, in order to construct examples of effects of Glivenko theorem’s generalization. Here we, first, propose a subordinated natural deduction system $NI_{\langle\alpha, \beta\rangle}, \alpha, \beta \in \{0, 1, 2, 3,\dots \omega\}$, for each logic in question, with a precise definition of a $NI_{\langle\alpha, \beta\rangle}$-inference. Moreover, we, comparatively, analyze precise and traditional definitions. Second, we prove that, for each $\alpha, \beta \in \{0, 1, 2, 3,\dots \omega\}$, a Hilbert-style calculus $HI_{\langle\alpha, \beta\rangle}$and a natural deduction system $NI_{\langle\alpha, \beta\rangle}$are equipollent, that is, a formula $A$ is provable in $HI_{\langle\alpha, \beta\rangle}$iff $A$ is provable in $NI_{\langle\alpha, \beta\rangle}$. DOI: 10.21146/2074-1472-2017-23-1-83-104


2012 ◽  
Vol 5 (4) ◽  
pp. 720-730 ◽  
Author(s):  
BARTELD KOOI ◽  
ALLARD TAMMINGA

AbstractTaking our inspiration from modal correspondence theory, we present the idea of correspondence analysis for many-valued logics. As a benchmark case, we study truth-functional extensions of the Logic of Paradox (LP). First, we characterize each of the possible truth table entries for unary and binary operators that could be added to LP by an inference scheme. Second, we define a class of natural deduction systems on the basis of these characterizing inference schemes and a natural deduction system for LP. Third, we show that each of the resulting natural deduction systems is sound and complete with respect to its particular semantics.


Sign in / Sign up

Export Citation Format

Share Document