weakly compact operators
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 0)

Author(s):  
KUN TU

Abstract We study super weakly compact operators through a quantitative method. We introduce a semi-norm $\sigma (T)$ of an operator $T:X\to Y$ , where X, Y are Banach spaces, the so-called measure of super weak noncompactness, which measures how far T is from the family of super weakly compact operators. We study the equivalence of the measure $\sigma (T)$ and the super weak essential norm of T. We prove that Y has the super weakly compact approximation property if and and only if these two semi-norms are equivalent. As an application, we construct an example to show that the measures of T and its dual $T^*$ are not always equivalent. In addition we give some sequence spaces as examples of Banach spaces having the super weakly compact approximation property.



2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Barış Akay ◽  
Ömer Gök

We establish the domination property and some lattice approximation properties for almost L-weakly and almost M-weakly compact operators. Then, we consider the linear span of positive almost L-weakly (resp., almost M-weakly) compact operators and give results about when they form a Banach lattice and have an order continuous norm.



Positivity ◽  
2021 ◽  
Author(s):  
Driss Lhaimer ◽  
Khalid Bouras ◽  
Mohammed Moussa


2021 ◽  
Vol 9 ◽  
Author(s):  
L. Antunes ◽  
K. Beanland ◽  
B. M. Braga

Abstract This article deals with the problem of when, given a collection $\mathcal {C}$ of weakly compact operators between separable Banach spaces, there exists a separable reflexive Banach space Z with a Schauder basis so that every element in $\mathcal {C}$ factors through Z (or through a subspace of Z). In particular, we show that there exists a reflexive space Z with a Schauder basis so that for each separable Banach space X, each weakly compact operator from X to $L_1[0,1]$ factors through Z. We also prove the following descriptive set theoretical result: Let $\mathcal {L}$ be the standard Borel space of bounded operators between separable Banach spaces. We show that if $\mathcal {B}$ is a Borel subset of weakly compact operators between Banach spaces with separable duals, then for $A \in \mathcal {B}$ , the assignment $A \to A^*$ can be realised by a Borel map $\mathcal {B}\to \mathcal {L}$ .



2020 ◽  
pp. 1-10
Author(s):  
Farid Afkir ◽  
Khalid Bouras ◽  
Aziz Elbour ◽  
Safae El Filali


2019 ◽  
Vol 46 (5) ◽  
pp. 1533-1538
Author(s):  
Masoumeh Mousavi Amiri ◽  
Kazem Haghnejad Azar


2019 ◽  
Vol 17 (1) ◽  
pp. 1147-1155 ◽  
Author(s):  
Marian Nowak

Abstract Let (Ω, Σ, μ) be a complete σ-finite measure space, φ a Young function and X and Y be Banach spaces. Let Lφ(X) denote the corresponding Orlicz-Bochner space and $\begin{array}{} \displaystyle \mathcal T^\wedge_\varphi \end{array}$ denote the finest Lebesgue topology on Lφ(X). We examine different classes of ( $\begin{array}{} \displaystyle \mathcal T^\wedge_\varphi \end{array}$, ∥ ⋅ ∥Y)-continuous linear operators T : Lφ(X) → Y: weakly compact operators, order-weakly compact operators, weakly completely continuous operators, completely continuous operators and compact operators. The relationships among these classes of operators are established.



2019 ◽  
Vol 145 (3) ◽  
pp. 255-264
Author(s):  
Driss Lhaimer ◽  
Mohammed Moussa ◽  
Khalid Bouras


Positivity ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 141-149
Author(s):  
Aziz Elbour ◽  
Farid Afkir ◽  
Mohammed Sabiri


Sign in / Sign up

Export Citation Format

Share Document