scholarly journals OPERATOR-VALUED FOURIER MULTIPLIERS ON PERIODIC BESOV SPACES AND APPLICATIONS

2004 ◽  
Vol 47 (1) ◽  
pp. 15-33 ◽  
Author(s):  
Wolfgang Arendt ◽  
Shangquan Bu

AbstractLet $1\leq p,q\leq\infty$, $s\in\mathbb{R}$ and let $X$ be a Banach space. We show that the analogue of Marcinkiewicz’s Fourier multiplier theorem on $L^p(\mathbb{T})$ holds for the Besov space $B_{p,q}^s(\mathbb{T};X)$ if and only if $1\ltp\lt\infty$ and $X$ is a UMD-space. Introducing stronger conditions we obtain a periodic Fourier multiplier theorem which is valid without restriction on the indices or the space (which is analogous to Amann’s result (Math. Nachr.186 (1997), 5–56) on the real line). It is used to characterize maximal regularity of periodic Cauchy problems.AMS 2000 Mathematics subject classification: Primary 47D06; 42A45

2007 ◽  
Vol 59 (6) ◽  
pp. 1207-1222 ◽  
Author(s):  
Shangquan Bu ◽  
Christian Le Merdy

AbstractWe consider maximal regularity in the Hp sense for the Cauchy problem u′(t) + Au(t) = f(t) (t ∈ ℝ), where A is a closed operator on a Banach space X and f is an X-valued function defined on ℝ. We prove that if X is an AUMD Banach space, then A satisfies Hp-maximal regularity if and only if A is Rademacher sectorial of type < . Moreover we find an operator A with Hp-maximal regularity that does not have the classical Lp-maximal regularity. We prove a related Mikhlin type theorem for operator valued Fourier multipliers on Hardy spaces Hp(ℝ X), in the case when X is an AUMD Banach space.


2004 ◽  
Vol 77 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Wolfgang Arendt ◽  
Shangquan Bu

AbstractWe show that the operator-valued Marcinkiewicz and Mikhlin Fourier multiplier theorem are valid if and only if the underlying Banach space is isomorphic to a Hilbert space.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guoping Zhao ◽  
Jiecheng Chen ◽  
Weichao Guo

We study the boundedness properties of the Fourier multiplier operatoreiμ(D)onα-modulation spacesMp,qs,α  (0≤α<1)and Besov spacesBp,qs(Mp,qs,1). We improve the conditions for the boundedness of Fourier multipliers with compact supports and for the boundedness ofeiμ(D)onMp,qs,α. Ifμis a radial functionϕ(|ξ|)andϕsatisfies some size condition, we obtain the sufficient and necessary conditions for the boundedness ofeiϕ(|D|)betweenMp1,q1s1,αandMp2,q2s2,α.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Carlos Lizama ◽  
Marina Murillo-Arcila

Abstract We consider the maximal regularity problem for a PDE of linear acoustics, named the Van Wijngaarden–Eringen equation, that models the propagation of linear acoustic waves in isothermal bubbly liquids, wherein the bubbles are of uniform radius. If the dimensionless bubble radius is greater than one, we prove that the inhomogeneous version of the Van Wijngaarden–Eringen equation, in a cylindrical domain, admits maximal regularity in Lebesgue spaces. Our methods are based on the theory of operator-valued Fourier multipliers.


Author(s):  
Bernd Carl

SynopsisIn this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.The statements of this paper are obtained by results recently proved elsewhere by the author.


2018 ◽  
Vol 27 (1) ◽  
pp. 01-08
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
GEORGE SANTHOSH ◽  

We present a semi-local convergence analysis for a Newton-like method to approximate solutions of equations when the derivative is not necessarily non-singular in a Banach space setting. In the special case when the equation is defined on the real line the convergence domain is improved for this method when compared to earlier results. Numerical results where earlier results cannot apply but the new results can apply to solve nonlinear equations are also presented in this study.


2016 ◽  
Vol 50 (1) ◽  
pp. 109-137 ◽  
Author(s):  
Bienvenido Barraza Martínez ◽  
Iván González Martínez ◽  
Jairo Hernández Monzón

Sign in / Sign up

Export Citation Format

Share Document