scholarly journals AN EQUIVARIANT WHITEHEAD ALGORITHM AND CONJUGACY FOR ROOTS OF DEHN TWIST AUTOMORPHISMS

2001 ◽  
Vol 44 (1) ◽  
pp. 117-141 ◽  
Author(s):  
Sava Krstić ◽  
Martin Lustig ◽  
Karen Vogtmann

AbstractGiven finite sets of cyclic words $\{u_1,\dots,u_k\}$ and $\{v_1,\dots,v_k\}$ in a finitely generated free group $F$ and two finite groups $A$ and $B$ of outer automorphisms of $F$, we produce an algorithm to decide whether there is an automorphism which conjugates $A$ to $B$ and takes $u_i$ to $v_i$ for each $i$. If $A$ and $B$ are trivial, this is the classic algorithm due to Whitehead. We use this algorithm together with Cohen and Lustig’s solution to the conjugacy problem for Dehn twist automorphisms of $F$ to solve the conjugacy problem for outer automorphisms which have a power which is a Dehn twist. This settles the conjugacy problem for all automorphisms of $F$ which have linear growth.AMS 2000 Mathematics subject classification: Primary 20F32. Secondary 57M07

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hip Kuen Chong ◽  
Daniel T. Wise

Abstract We study a family of finitely generated residually finite groups. These groups are doubles F 2 * H F 2 F_{2}*_{H}F_{2} of a rank-2 free group F 2 F_{2} along an infinitely generated subgroup 𝐻. Varying 𝐻 yields uncountably many groups up to isomorphism.


2015 ◽  
Vol 3 ◽  
Author(s):  
VAN CYR ◽  
BRYNA KRA

For a finite alphabet ${\mathcal{A}}$ and shift $X\subseteq {\mathcal{A}}^{\mathbb{Z}}$ whose factor complexity function grows at most linearly, we study the algebraic properties of the automorphism group $\text{Aut}(X)$. For such systems, we show that every finitely generated subgroup of $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$, in contrast to the behavior when the complexity function grows more quickly. With additional dynamical assumptions we show more: if $X$ is transitive, then $\text{Aut}(X)$ is virtually $\mathbb{Z}$; if $X$ has dense aperiodic points, then $\text{Aut}(X)$ is virtually $\mathbb{Z}^{d}$. We also classify all finite groups that arise as the automorphism group of a shift.


1973 ◽  
Vol 16 (4) ◽  
pp. 458-466 ◽  
Author(s):  
A. Karrass ◽  
A. Pietrowski ◽  
D. Solitar

Using Stalling's characterization [11] of finitely generated (f. g.) groups with infinitely many ends, and subgroup theorems for generalized free products and HNN groups (see [9], [5], and [7]), we give (in Theorem 1) a n.a.s.c. for a f.g. group to be a finite extension of a free group. Specifically (using the terminology extension of and notation of [5]), a f.g. group G is a finite extension of a free group if and only if G is an HNN group where K is a tree product of a finite number of finite groups (the vertices of K), and each (associated) subgroup Li, Mi is a subgroup of a vertex of K.


2002 ◽  
Vol 45 (3) ◽  
pp. 513-522
Author(s):  
Martyn R. Dixon ◽  
Leonid A. Kurdachenko

AbstractA group $G$ is called a group with boundedly finite conjugacy classes (or a BFC-group) if $G$ is finite-by-abelian. A group $G$ satisfies the maximal condition on non-BFC-subgroups if every ascending chain of non-BFC-subgroups terminates in finitely many steps. In this paper the authors obtain the structure of finitely generated soluble-by-finite groups with the maximal condition on non-BFC subgroups.AMS 2000 Mathematics subject classification: Primary 20E15. Secondary 20F16; 20F24


2007 ◽  
Vol 17 (08) ◽  
pp. 1493-1535 ◽  
Author(s):  
L. MARKUS-EPSTEIN

Stallings showed that every finitely generated subgroup of a free group is canonically represented by a finite minimal immersion of a bouquet of circles. In terms of the theory of automata, this is a minimal finite inverse automaton. This allows for the deep algorithmic theory of finite automata and finite inverse monoids to be used to answer questions about finitely generated subgroups of free groups. In this paper, we attempt to apply the same methods to other classes of groups. A fundamental new problem is that the Stallings folding algorithm must be modified to allow for "sewing" on relations of non-free groups. We look at the class of groups that are amalgams of finite groups. It is known that these groups are locally quasiconvex and thus, all finitely generated subgroups are represented by finite automata. We present an algorithm to compute such a finite automaton and use it to solve various algorithmic problems.


2001 ◽  
Vol 11 (04) ◽  
pp. 405-445 ◽  
Author(s):  
S. MARGOLIS ◽  
M. SAPIR ◽  
P. WEIL

We relate the problem of computing the closure of a finitely generated subgroup of the free group in the pro-V topology, where V is a pseudovariety of finite groups, with an extension problem for inverse automata which can be stated as follows: given partial one-to-one maps on a finite set, can they be extended into permutations generating a group in V? The two problems are equivalent when V is extension-closed. Turning to practical computations, we modify Ribes and Zalesskiĭ's algorithm to compute the pro-p closure of a finitely generated subgroup of the free group in polynomial time, and to effectively compute its pro-nilpotent closure. Finally, we apply our results to a problem in finite monoid theory, the membership problem in pseudovarieties of inverse monoids which are Mal'cev products of semilattices and a pseudovariety of groups. Résumé: Nous établissons un lien entre le problème du calcul de l'adhéerence d'un sous-groupe finiment engendré du groupe libre dans la topologie pro-V, oú V est une pseudovariété de groupes finis, et un probléme d'extension pour les automates inversifs qui peut être énoncé de la faç con suivante: étant données des transformations partielles injectives d'un ensemble fini, peuvent-elles être étendues en des permutations qui engendrent un groupe dans V? Les deux problèmes sont équivalents si V est fermée par extensions. Nous intéressant ensuite aux calculs pratiques, nous modifions l'algorithme de Ribes et Zalesskiĭ pour calculer l'adhérence pro-p d'un sous-groupe finiment engendré du groupe libre en temps polynomial et pour calculer effectivement sa clôture pro-nilpotente. Enfin nous appliquons nos résultats à un problème de théorie des monoïdes finis, celui de de l'appartenance dans les pseudovariétés de monoïdes inversifs qui sont des produits de Mal'cev de demi-treillis et d'une pseudovariété de groupes.


2001 ◽  
Vol 11 (02) ◽  
pp. 171-184 ◽  
Author(s):  
THIERRY COULBOIS

We consider the following property for a group G:(RZn)ifH1,…,Hnare finitely generated subgroups of G then the setH1 H2⋯ Hn= {h1 ⋯ hn| h1∈ H1, …,hn∈ Hn}is closed with respect to the profinite topology of G. It is obvious that finite groups and finitely generated commutative groups have the property ( RZ n). L. Ribes and P. Zalesskiĭ proved that any free group has ( RZ n). We show that the property ( RZ n) is stable under the free product operation. We use techniques developed by B. Herwig and D. Lascar on the one hand, R. Gitik on the other hand.


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


Sign in / Sign up

Export Citation Format

Share Document