Finite groups of outer automorphisms of a free group

Author(s):  
Marc Culler
2001 ◽  
Vol 44 (1) ◽  
pp. 117-141 ◽  
Author(s):  
Sava Krstić ◽  
Martin Lustig ◽  
Karen Vogtmann

AbstractGiven finite sets of cyclic words $\{u_1,\dots,u_k\}$ and $\{v_1,\dots,v_k\}$ in a finitely generated free group $F$ and two finite groups $A$ and $B$ of outer automorphisms of $F$, we produce an algorithm to decide whether there is an automorphism which conjugates $A$ to $B$ and takes $u_i$ to $v_i$ for each $i$. If $A$ and $B$ are trivial, this is the classic algorithm due to Whitehead. We use this algorithm together with Cohen and Lustig’s solution to the conjugacy problem for Dehn twist automorphisms of $F$ to solve the conjugacy problem for outer automorphisms which have a power which is a Dehn twist. This settles the conjugacy problem for all automorphisms of $F$ which have linear growth.AMS 2000 Mathematics subject classification: Primary 20F32. Secondary 57M07


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hip Kuen Chong ◽  
Daniel T. Wise

Abstract We study a family of finitely generated residually finite groups. These groups are doubles F 2 * H F 2 F_{2}*_{H}F_{2} of a rank-2 free group F 2 F_{2} along an infinitely generated subgroup 𝐻. Varying 𝐻 yields uncountably many groups up to isomorphism.


1972 ◽  
Vol 6 (3) ◽  
pp. 357-378 ◽  
Author(s):  
R.M. Bryant ◽  
L.G. Kovács

The skeleton of a variety of groups is defined to be the intersection of the section closed classes of groups which generate . If m is an integer, m > 1, is the variety of all abelian groups of exponent dividing m, and , is any locally finite variety, it is shown that the skeleton of the product variety is the section closure of the class of finite monolithic groups in . In particular, S) generates . The elements of S are described more explicitly and as a consequence it is shown that S consists of all finite groups in if and only if m is a power of some prime p and the centre of the countably infinite relatively free group of , is a p–group.


2019 ◽  
Vol 29 (08) ◽  
pp. 1419-1430
Author(s):  
William Cocke

The number of distinct [Formula: see text]-variable word maps on a finite group [Formula: see text] is the order of the rank [Formula: see text] free group in the variety generated by [Formula: see text]. For a group [Formula: see text], the number of word maps on just two variables can be quite large. We improve upon previous bounds for the number of word maps over a finite group [Formula: see text]. Moreover, we show that our bound is sharp for the number of 2-variable word maps over the affine group over fields of prime order and over the alternating group on five symbols.


2015 ◽  
Vol 159 (3) ◽  
pp. 445-458 ◽  
Author(s):  
CATHERINE PFAFF

AbstractBy proving precisely which singularity index lists arise from the pair of invariant foliations for a pseudo-Anosov surface homeomorphism, Masur and Smillie [MS93] determined a Teichmüller flow invariant stratification of the space of quadratic differentials. In this paper we determine an analog to the theorem forOut(F3). That is, we determine which index lists permitted by the [GJLL98] index sum inequality are achieved by ageometric fully irreducible outer automorphisms of the rank-3 free group.


1999 ◽  
Vol 60 (2) ◽  
pp. 177-189 ◽  
Author(s):  
K.W. Gruenberg ◽  
L.G. Kovács

Let G be a finite group, F a free group of finite rank, R the kernel of a homomorphism φ of F onto G, and let [R, F], [R, R] denote mutual commutator subgroups. Conjugation in F yields a G-module structure on R/[R, R] let dg(R/[R, R]) be the number of elements required to generate this module. Define d(R/[R, F]) similarly. By an earlier result of the first author, for a fixed G, the difference dG(R/[R, R]) − d(R/[R, F]) is independent of the choice of F and φ; here it is called the proficiency gap of G. If this gap is 0, then G is said to be proficient. It has been more usual to consider dF(R), the number of elements required to generate R as normal subgroup of F: the group G has been called efficient if F and φ can be chosen so that dF(R) = dG(R/[R, F]). An efficient group is necessarily proficient; but (though usually expressed in different terms) the converse has been an open question for some time.


Sign in / Sign up

Export Citation Format

Share Document