scholarly journals Evolution of reduced pre-adult viability and larval growth rate in laboratory populations of Drosophila melanogaster selected for shorter development time

2000 ◽  
Vol 76 (3) ◽  
pp. 249-259 ◽  
Author(s):  
N. G. PRASAD ◽  
MALLIKARJUN SHAKARAD ◽  
VISHAL M. GOHIL ◽  
V. SHEEBA ◽  
M. RAJAMANI ◽  
...  

Four large (n > 1000) populations of Drosophila melanogaster, derived from control populations maintained on a 3 week discrete generation cycle, were subjected to selection for fast development and early reproduction. Egg to eclosion survivorship and development time and dry weight at eclosion were monitored every 10 generations. Over 70 generations of selection, development time in the selected populations decreased by approximately 36 h relative to controls, a 20% decline. The difference in male and female development time was also reduced in the selected populations. Flies from the selected populations were increasingly lighter at eclosion than controls, with the reduction in dry weight at eclosion over 70 generations of selection being approximately 45% in males and 39% in females. Larval growth rate (dry weight at eclosion/development time) was also reduced in the selected lines over 70 generations, relative to controls, by approximately 32% in males and 24% in females. However, part of this relative reduction was due to an increase in growth rate of the controls populations, presumably an expression of adaptation to conditions in our laboratory. After 50 generations of selection had elapsed, a considerable and increasing pre- adult viability cost to faster development became apparent, with viability in the selected populations being about 22% less than that of controls at generation 70 of selection.

2003 ◽  
Vol 67 (4) ◽  
pp. 477-490 ◽  
Author(s):  
Alberto García ◽  
Dolores Cortés ◽  
Teodoro Ramírez ◽  
Ana Giráldez ◽  
Ángel Carpena

1977 ◽  
Vol 4 (5) ◽  
pp. 785 ◽  
Author(s):  
I Sofield ◽  
LT Evans ◽  
MG Cook ◽  
IF Wardlaw

Controlled-environment conditions were used to examine the effects of cultivar and of temperature and illuminance after anthesis on grain setting and on the duration and rate of grain growth. After an initial lag period, which did not differ greatly between cultivars, grain dry weight increased linearly under most conditions until final grain weight was approached. Growth rate per grain depended on floret position within the ear, varied between cultivars (those with larger grains at maturity having a faster rate), and increased with rise in temperature. With cultivars in which grain number per ear was markedly affected by illuminance, light had relatively little effect on growth rate per grain. With those in which grain number was less affected by illuminance, growth rate per grain was highly responsive to it, especially in the more distal florets. In both cases there was a close relation between leaf photosynthetic rate as influenced by illuminance, the rate of grain growth per ear, and final grain yield per ear. The duration of linear grain growth, on the other hand, was scarcely influenced by illuminance, but was greatly reduced as temperature rose, with pronounced effects on grain yield per ear. Cultivars differed to some extent in their duration of linear growth, but these differences accounted for less of the difference in final weight per grain than did those in rate of grain growth. Under most conditions the cessation of grain growth did not appear to be due to lack of assimilates.


Polar Biology ◽  
2009 ◽  
Vol 33 (5) ◽  
pp. 693-702 ◽  
Author(s):  
Mikaela Torp ◽  
Johan Olofsson ◽  
Johanna Witzell ◽  
Robert Baxter

2020 ◽  
Vol 34 (8) ◽  
pp. 1577-1588
Author(s):  
Wataru Kojima ◽  
Tatsunori Nakakura ◽  
Ayumi Fukuda ◽  
Chung‐Ping Lin ◽  
Masahiro Harada ◽  
...  

2000 ◽  
Vol 78 (10) ◽  
pp. 1712-1722 ◽  
Author(s):  
Carlos D Camp ◽  
Jeremy L Marshall ◽  
Richard M Austin, Jr.

We investigated the possible role of environmental variables in determining body size within a complex of salamander species (Desmognathus quadramaculatus). We analyzed data generated from life-history studies on populations from throughout the range of this species complex. We incorporated an alternative-hypothesis framework (sensu Platt) to determine the better predictor of adult body size, age at maturity, or size at metamorphosis. We found that almost 90% of the variation in adult body size was explained by size at metamorphosis, which was determined by a combination of rate of larval growth and length of the larval period. Environmental temperature and moisture level were positively correlated with larval growth rate and length of the larval period, respectively. We propose a simple model of body-size evolution that incorporates both adaptive and plastic components. We suggest that the length of the larval period may adaptively respond to moisture-level predictability. In addition, we suggest that the response of the larval growth rate to temperature may be plastic. Because the selection pressure due to drying-induced mortality is pervasive among species of amphibians, it may have played a role in shaping body-size radiation in desmognathines as well as the ecological structure of Appalachian streamside communities.


Sign in / Sign up

Export Citation Format

Share Document