leaf photosynthetic rate
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2457
Author(s):  
Tianyao Meng ◽  
Xi Chen ◽  
Xubin Zhang ◽  
Jialin Ge ◽  
Guisheng Zhou ◽  
...  

Since genetic improvement greatly promoted an increased yield japonica inbred rice in east China after the 1990s, better root characteristics were certainly expected. In 2018 and 2019, nine japonica inbred rice released in the 1990s, 2000s, and 2010s were investigated to evaluate the changes in root morpho-physiology and identify root traits that contributed to the positive yield trends during the genetic process. The 2010’s rice had 8.0 and 4.3% higher grain yield than the 1990’s and the 2000’s rice, respectively (p < 0.05). Genetic yield gain was mainly attributed to the increased spikelets per panicle. Compared with the 1990’s and the 2000’s rice, the 2010’s rice had higher shoot biomass at heading and maturity (p < 0.05), as well as root biomass (p < 0.05), especially for root biomass of 15–30 cm soil depth. Leaf area index (LAI), soil-plant analysis development (SPAD) values, and leaf photosynthetic rate at middle grain-filling period (MGP) and late grain-filling period (LGP) were all increased. The 2010’s rice had consistently higher root length and volume, root oxidation activity, and root bleeding rate at MGP and LGP than the 1990’s and the 2000’s rice (p < 0.05). Positive correlations were detected between root length and volume, root oxidation activity, and root bleeding rate at MGP, LGP, and SPAD values, leaf photosynthetic rate at MGP and LGP, and higher shoot biomass accumulation after heading and grain yield (p < 0.05 or p < 0.01). The present study implied that genetic improvement optimized post-heading root morphology and physiology, which maintained shoot stay-green and facilitated biomass accumulation and yield increase in japonica inbred rice during the genetic process since the 1990s.


2021 ◽  
Vol 24 (1) ◽  
pp. 43-55
Author(s):  
F Ahamed ◽  
IM Ahamed ◽  
AFM Shamim Ahsan ◽  
B Ahmed ◽  
F Begum

An experiment on rapeseed/mustard genotypes was conducted during 2019-2020 rabi season in vinyl house of Plant Physiology Division of Bangladesh Agricultural Research Institute (BARI), Gazipur to find out the salt-tolerant genotypes based on the responses of their physiological parameters and yield. Five selected rapeseed/ mustard genotypes (V1= Jun-536, V2 = BJDH-12, V3 = BD-10115, V4 = BARI Sarisha-14, V5 = BD-6950) were tested at three salinity levels (S0= 0, S1= 5 and S2=10 dS m-1). Irrespective of the genotypes, salinity stress showed a negative effect on the measured physiological parameters as well as seed yield. Leaf chlorophyll contents, leaf area, leaf photosynthetic rate and total dry matter (TDM) were reduced due to salinity stress which ultimately affected seed yield irrespective of the genotypes. However, these parameters were less affected by the salinity in V1 and V2 genotypes compared to others. Sodium and potassium ion contents and their ratios (K+/Na+) in leaf tissues were significantly affected by salinity stress. Among the genotypes, V1 and V2 showed higher K+/Na+ ratios in leaf under both the salinity treatments, and that phenomenon indicated their higher tolerance to salinity than the other genotypes. Catalase (CAT), Peroxidase (POD) activity and Malondialdehyde (MDA) content of the genotypes increased due to salinity stress with variability among the genotypes. The higher CAT and POD activity with lower MDA content was found in V1 and V2 genotypes which indicated their better salt tolerance ability compared to others. These genotypes also showed higher seed yield under both the salinity levels (5 and 10 dS m-1) compared to other genotypes. Based on the responses of physiological parameters and seed yield to salinity, the genotypes Jun-536(V1) and BJDH-12(V2) could be considered relatively tolerant to salinity stress. Bangladesh Agron. J. 2021, 24(1): 43-55


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sotaro Honda ◽  
Satoshi Ohkubo ◽  
Nan Su San ◽  
Anothai Nakkasame ◽  
Kazuki Tomisawa ◽  
...  

AbstractLeaf photosynthetic rate changes across the growing season as crop plants age. Most studies of leaf photosynthesis focus on a specific growth stage, leaving the question of which pattern of photosynthetic dynamics maximizes crop productivity unanswered. Here we obtained high-frequency data of canopy leaf CO2 assimilation rate (A) of two elite rice (Oryza sativa) cultivars and 76 inbred lines across the whole growing season. The integrated A value after heading was positively associated with crop growth rate (CGR) from heading to harvest, but that before heading was not. A curve-smoothing analysis of A after heading showed that accumulated A at > 80% of its maximum (A80) was positively correlated with CGR in analyses of all lines mixed and of lines grouped by genetic background, while the maximum A and accumulated A at ≤ 80% were less strongly correlated with CGR. We also found a genomic region (~ 12.2 Mb) that may enhance both A80 and aboveground biomass at harvest. We propose that maintaining a high A after heading, rather than having high maximum A, is a potential target for enhancing rice biomass accumulation.


2021 ◽  
Author(s):  
Yu Tanaka ◽  
Kazuki Taniyoshi ◽  
Ayumu Imamura ◽  
Ryo Mukai ◽  
Shun Sukemura ◽  
...  

2020 ◽  
Author(s):  
Sotaro Honda ◽  
Satoshi Ohkubo ◽  
Nan San ◽  
Anothai Nakkasame ◽  
Kazuki Tomisawa ◽  
...  

Abstract Leaf photosynthetic rate changes across the growing season as crop plants age. Most studies of leaf photosynthesis focus on a specific growth stage, leaving the question of which pattern of photosynthetic dynamics maximizes crop productivity unanswered. Here we obtained high-frequency data of canopy leaf CO2 assimilation rate (A) of two elite rice (Oryza sativa) cultivars and 76 inbred lines across the whole growing season. The integrated A value after heading was closely associated with crop growth rate (CGR) from heading to harvest, but that before heading was not. A curve-smoothing analysis of A after heading showed that accumulated A at >80% of its maximum (A80) was closely correlated with CGR in analyses of all lines mixed and of lines grouped by genetic background, while the maximum A and accumulated A at ≤80% were less strongly correlated with CGR. We also found a genomic region that may enhance both A80 and aboveground biomass at harvest. We propose that maintaining a high A after heading, rather than having high maximum A, is a potential target for enhancing rice biomass accumulation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zai Shi ◽  
Tian-Gen Chang ◽  
Faming Chen ◽  
Honglong Zhao ◽  
Qingfeng Song ◽  
...  

Abstract Huanghuazhan (HHZ) and 9,311 are two elite rice cultivars in China. They have achieved high yield through quite different mechanisms. One of the major features that gives high yield capacity to 9,311 is its strong early vigor, i.e., faster establishment of its seedling as well as its better growth in its early stages. To understand the mechanistic basis of early vigor in 9,311, as compared to HHZ the cultivar, we have examined, under controlled environmental conditions, different morphological and physiological traits that may contribute to its early vigor. Our results show that the fresh weight of the seeds, at germination, not only determined the seedling biomass at 10 days after germination (DAG), but was also responsible for ~ 80% of variations in plant biomass between the two cultivars even up to 30 DAG. Furthermore, the 9,311 cultivar had a larger root system, which led to its higher nitrogen uptake capacity. Other noteworthy observations about 9,311 being a better cultivar than HHZ are: (i) Ten out of 15 genes involved in nitrogen metabolism were much more highly expressed in its roots; (ii) it had a higher water uptake rate, promoting better root-to-shoot nitrogen transfer; and (iii) consistent with the above, it had higher leaf photosynthetic rate and stomatal conductance. All of the above identified features explain, to a large extent, why the 9,311, as compared to HHZ, exhibits much more vigorous early growth.


2020 ◽  
Vol 126 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Xiaohua Qi ◽  
Hirokazu Takahashi ◽  
Yasushi Kawasaki ◽  
Yuya Ohta ◽  
Masahide Isozaki ◽  
...  

Abstract Background and Aims Dutch tomato cultivars tend to have a greater yield than Japanese cultivars even if they are grown under the same conditions. Factors contributing to the increased yield of the Dutch cultivars were a greater light use efficiency and greater leaf photosynthetic rate. On the other hand, the relationship between tomato yields and anatomical traits is still unclear. The aim of this study is to identify the anatomical traits related to the difference in yield between Dutch and Japanese cultivars. Methods Anatomical properties were compared during different growth stages of Dutch and Japanese tomatoes. Hormone profiles and related gene expression in hypocotyls of Dutch and Japanese cultivars were compared in the hypocotyls of 3- and 4-week-old plants. Key results Dutch cultivars have a more developed secondary xylem than Japanese cultivars, which would allow for greater transport of water, mineral nutrients and phytohormones to the shoots. The areas and ratios of the xylem in the hypocotyls of 3- to 6-week-old plants were larger in the Dutch cultivars. In reciprocal grafts of the Japanese and Dutch cultivars, xylem development at the scion and rootstock depended on the scion cultivar, suggesting that some factors in the scion are responsible for the difference in xylem development. The cytokinin content, especially the level of N6-(Δ 2-isopentenyl) adenine (iP)-type cytokinin, was higher in the Dutch cultivars. This result was supported by the greater expression of Sl-IPT3 (a cytokinin biosynthesis gene) and Sl-RR16/17 (a cytokinin-responsive gene) in the Dutch cultivars. Conclusions These results suggest that iP-type cytokinins, which are locally synthesized in the hypocotyl, contribute to xylem development. The greater xylem development in Dutch cultivars might contribute to the high yield of the tomato.


2020 ◽  
Vol 47 (12) ◽  
pp. 1053
Author(s):  
Xinglin Tang ◽  
Guangzheng Liu ◽  
Jiang Jiang ◽  
Changju Lei ◽  
Yunxing Zhang ◽  
...  

Light intensity is a major environmental factor affecting the growth and survival of trees in a forest. The effect of light reduction on photosynthesis and photorespiration of an evergreen broad-leaved tree, Phoebe bournei (Hemsley) Yang was examined with three levels of full light, 50.5% light, and 21.8% light. The results showed that shading led to significant increase in plant height and crown diameter. Light-saturated leaf photosynthetic rate (Amax), maximal carboxylation activity (Vcmax), maximum electron transfer rate (Jmax), stomatal conductance (gs), mesophyll conductance (gm) and chloroplast CO2 concentration (Cc) significantly increased in response to shade. Photorespiratory CO2 release rate (PR) was higher in plants grown under shade conditions than under full light. The relative limitations of gm (lm) was higher than the relative limitations of gs (ls) and the relative limitations of biochemical factors (lb) in leaves of P. bournei grown under full light, whereas lm was lower than ls and lb under shade. Our results suggest that increase of photosynthesis in P. bournei leaves grown under shade is associated with enhanced CO2 diffusion and biochemistry. And we propose that enhancement of the photorespiratory is essential for shade leaves to improve photosynthesis.


HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2195-2201 ◽  
Author(s):  
Xunzhong Zhang ◽  
Mike Goatley ◽  
Jamie Conner ◽  
Megan Wilkins ◽  
Inna Teshler ◽  
...  

Plant-based pigments have been used as substances to improve crop yield and quality, but the mechanisms of their action on plant growth and stress tolerance are not well understood. The objective of this study was to investigate effects of two formulations of plant-based copper chlorophyllin (Cu-Chl) with and without synthetic paraffinic oil. These formulations, referred to as B18-0074 and B18-0075, were applied as a soil drench plus foliar or a foliar-only application. We investigated their impact on physiological responses of tomato plants under prolonged drought stress conditions. In addition, we examined photosynthetic impacts associated with the application of Cu-Chl formulations. B18-0074 increased leaf photosynthetic rate (Pn) by 8.8% with soil plus foliar application and 18.6% with foliar application relative to the control under drought stress at day 21. Similarly, B18-0075 increased Pn by 16.9% with soil plus foliar application and 24.6% with foliar application relative to the control under drought stress at day 21. The application of the two Cu-Chl–containing products increased leaf antioxidant enzyme catalase (CAT) and ascorbate peroxidase (APX) activity, as well as glutathione (GSH) content. The two products also increased leaf soluble sugars and proline content, indicating improvement of osmotic adjustment. Soil plus foliar and foliar application only of B18-0075 increased root biomass but did not consistently affect plant shoot growth. The results of this study suggest that application of Cu-Chl in combination with synthetic paraffinic oil may improve photosynthetic function, osmotic adjustment, antioxidant defense capacity, and root growth of tomato plant grown under drought stress conditions.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 305 ◽  
Author(s):  
Victoria Figueroa-Bustos ◽  
Jairo A. Palta ◽  
Yinglong Chen ◽  
Kadambot H.M. Siddique

In the Australian grainbelt, early winter rainfall has declined during the last 30 years, and farmers sow their crops dry, increasing the risk of early season drought. This study aimed to examine whether differences in the root systems were associated with tolerance to early season drought. Three wheat cultivars with different root systems were grown in 1 m columns in a glasshouse. Immediately after sowing in dry soil, 440 mL water (equivalent to 25 mm rainfall) was supplied to each column, and no water was added to induce the early-season drought for the next 30 days. Shoot and root traits were measured at the end of the early season drought, anthesis and at maturity, respectively. The restricted water supply reduced Ψleaf, stomatal conductance, leaf photosynthetic rate, shoot and root biomass. Early season drought delayed phenology in all cultivars, but there was recovery of root and shoot biomass at anthesis in all three cultivars. Leaf area and shoot biomass at anthesis in Bahatans-87 (large root system) recovered better than Tincurrin (small root system). At maturity, early season drought reduced grain yield more in Tincurrin than Bahatans-87. The slow phenology of Bahatans-87 allowed greater recovery after the drought in leaf area and shoot biomass, which may explain the smaller reduction in grain yield after early season drought.


Sign in / Sign up

Export Citation Format

Share Document