grain filling
Recently Published Documents


TOTAL DOCUMENTS

1934
(FIVE YEARS 781)

H-INDEX

81
(FIVE YEARS 17)

Author(s):  
Itamar R. Teixeira ◽  
Paulo R. Lopes ◽  
Westefann S. Sousa ◽  
Gisele C. da S. Teixeira

ABSTRACT The response capacity of the bean to fix atmospheric nitrogen is questionable, mainly due to its inability to supply all the nitrogen in the flowering and grain filling phases when the crop needs it most. Thus, a new application of inoculant can keep the population of rhizobia in the soil at adequate levels, meeting all the nitrogen demands of the plant. This study aimed to investigate the nodulation capacity and the production of beans submitted to doses and reinoculation of Rhizobium in topdressing under field conditions in two growth stages. For this, an experiment was conducted using a randomized block design with four replicates in a 4 × 2 + 2 factorial scheme. The treatments consisted of the application of four doses of liquid inoculant containing Rhizobium tropici (SEMIA 4088), in the concentration 2 × 109 CFU g-1, in topdressing (0, 100, 200 and 400 mL ha-1), in two development stages (V4 and R5) of plants, and two additional treatments (inoculation via seed at a dose of 100 g of the product per 50 kg of seeds and mineral nitrogen fertilization at a dose of 16 kg ha-1 applied at sowing and 60 kg ha-1 in topdressing, divided into two stages, with half being applied at the stage V3 and the other half in V4 stage).The inoculant application increased the nodulation rates of bean cultivar BRS Cometa and the dry biomass produced by plants, using doses of 232 and 221 mL ha-1, respectively. The dose of 257mL ha-1 of the liquid inoculant applied in topdressing at the V4 stage, and the inoculation via seed provide greater common bean yield without supplementing mineral nitrogen.


2022 ◽  
Vol 12 ◽  
Author(s):  
Federico H. Larrosa ◽  
Lucas Borrás

Altered stand density affects maize yields by producing changes in both numerical yield components, kernel number per plant (KNP), and kernel weight (KW). Kernel number is determined by the accumulation of ear biomass during the flowering period, whereas KW is determined by the sink potential established during flowering and the capacity of the plant to fulfill this potential during effective grain filling. Here, we tested if different short shading treatments during different stages around flowering can help discriminate genotypic differences in eco-physiological parameters relevant for maize stand density yield response and associated yield components. Our specific objectives were to: (i) identify hybrids with differential shading stress response, (ii) explore shading effects over eco-physiological parameters mechanistically related to KNP and KW, and (iii) test if shading stress can be used for detecting differential genotypic yield responses to stand density. The objectives were tested using four commercial maize hybrids. Results indicated that KNP was the yield component most related to yield changes across the different shading treatments, and that the specific shading imposed soon after anthesis generated the highest yield reductions. Hybrids less sensitive to shading stress were those that reduced their plant growth rate the least and the ones that accumulated more ear biomass during flowering. Genotype susceptibility to shading stress around flowering was correlated to stand density responses. This indicated that specific shading stress treatments are a useful tool to phenotype for differential stand density responses of commercial hybrids.


MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 161-172
Author(s):  
ANANTA VASHISTH ◽  
DEBASISH ROY ◽  
AVINASH GOYAL ◽  
P. KRISHNAN

Field experiments were conducted on the research farm of IARI, New Delhi during Rabi 2016-17 and 2017-18. Three varieties of wheat (PBW-723, HD-2967 and HD-3086) were sown on three different dates for generating different weather condition during various phenological stages of crop. Results showed that during early crop growth stages soil moisture had higher value and soil temperature had lower value and with progress of crop growth stage, the moisture in the upper layer decreased and soil temperature increased significantly as compared to the bottom layers. During tillering and jointing stage, air temperature within canopy was more and relative humidity was less while during flowering and grain filling stage, air temperature within canopy was less and relative humidity was more in timely sown crop as compared to late and very late sown crop. Radiation use efficiency and relative leaf water content had significantly higher value while leaf water potential had lower value in timely sown crop followed by late and very late sown crop. Yield had higher value in HD-3086 followed by HD-2967 and PBW-723 in all weather conditions. Canopy air temperature difference had positive value in very late sown crop particularly during flowering and grain-filling stages. This reflects in the yield. Yield was more in timely sown crop as compared to late and very late sown crop.  


2022 ◽  
Author(s):  
christopher Baker ◽  
Dhruv Patel ◽  
Benjamin J. Cole ◽  
Lindsey G. Ching ◽  
Oliver Dautermann ◽  
...  

Climate change is globally affecting rainfall patterns, necessitating the improvement of drought tolerance in crops. Sorghum bicolor is a drought-tolerant cereal capable of producing high yields under water scarcity conditions. Functional stay-green sorghum genotypes can maintain green leaf area and efficient grain filling in terminal post-flowering water deprivation, a period of ~10 weeks. To obtain molecular insights into these characteristics, two drought-tolerant genotypes, BTx642 and RTx430, were grown in control and terminal post-flowering drought field plots in the Central Valley of California. Photosynthetic, photoprotective, water dynamics, and biomass traits were quantified and correlated with metabolomic data collected from leaves, stems, and roots at multiple timepoints during drought. Physiological and metabolomic data was then compared to longitudinal RNA sequencing data collected from these two genotypes. The metabolic response to drought highlights the uniqueness of the post-flowering drought acclimation relative to pre-flowering drought. The functional stay-green genotype BTx642 specifically induced photoprotective responses in post-flowering drought supporting a putative role for photoprotection in the molecular basis of the functional stay-green trait. Specific genes are highlighted that may contribute to post-flowering drought tolerance and that can be targeted in crops to maximize yields under limited water input conditions.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 202
Author(s):  
Zhen Chen ◽  
Qian Cheng ◽  
Fuyi Duan ◽  
Xiuqiao Huang ◽  
Honggang Xu ◽  
...  

Winter wheat is a widely-grown cereal crop worldwide. Using growth-stage information to estimate winter wheat yields in a timely manner is essential for accurate crop management and rapid decision-making in sustainable agriculture, and to increase productivity while reducing environmental impact. UAV remote sensing is widely used in precision agriculture due to its flexibility and increased spatial and spectral resolution. Hyperspectral data are used to model crop traits because of their ability to provide continuous rich spectral information and higher spectral fidelity. In this study, hyperspectral image data of the winter wheat crop canopy at the flowering and grain-filling stages was acquired by a low-altitude unmanned aerial vehicle (UAV), and machine learning was used to predict winter wheat yields. Specifically, a large number of spectral indices were extracted from the spectral data, and three feature selection methods, recursive feature elimination (RFE), Boruta feature selection, and the Pearson correlation coefficient (PCC), were used to filter high spectral indices in order to reduce the dimensionality of the data. Four major basic learner models, (1) support vector machine (SVM), (2) Gaussian process (GP), (3) linear ridge regression (LRR), and (4) random forest (RF), were also constructed, and an ensemble machine learning model was developed by combining the four base learner models. The results showed that the SVM yield prediction model, constructed on the basis of the preferred features, performed the best among the base learner models, with an R2 between 0.62 and 0.73. The accuracy of the proposed ensemble learner model was higher than that of each base learner model; moreover, the R2 (0.78) for the yield prediction model based on Boruta’s preferred characteristics was the highest at the grain-filling stage.


2022 ◽  
Author(s):  
Zohreh Hajibarat ◽  
Abbas Saidi ◽  
Maryam Shahbazi ◽  
Mehrshad Zeinalabedini ◽  
Ahmad Mosuapour Gorji ◽  
...  

Abstract Barley yield relies more on stem reserves under stress conditions at the grain filling stage. At terminal drought stresses, the remobilization of reserved assimilates from stem to seed contributes a major role in yield. To understand the molecular mechanism of stem reserve utilization during drought stress, a comparative proteome and physiological analyses were performed on the penultimate internodes of three genotypes of barley Yousef (tolerant), Morocco (susceptible), and PBYT17 (semi-tolerant) under drought stress at 21 and 28 days after anthesis (DAA). Under water stress and well-watered conditions Yousef showed significantly higher RWC, grain yield, and stem reserve remobilization capacity than susceptible and semi-tolerant genotypes. The proteome analysis led to the identification of 1580 differentially abundant proteins (DAPs), of which 759 and 821 proteins were differentially expressed at 21 and 28 DAA, respectively. Tolerant genotype in response to drought stress increased the abundance of several plant cell wall polysaccharide degradation proteins and protein kinases associated with posttranslational-associated, which might accelerate remobilization process for seed biomass formation compared to susceptible one under drought stress. However, the susceptible genotype increased the abundance of proteins involved in RNA metabolism and transcriptional changes to save energy sources for the growth and survival during drought stress. These findings suggest that barley might response to water stress by efficiently remobilize assimilates from stem to grain through specific remobilization processes.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ze Tian Fang ◽  
Rajan Kapoor ◽  
Aniruddha Datta ◽  
Sakiko Okumoto

AbstractWheat grain protein content and composition are important for its end-use quality. Protein synthesis during the grain filling phase is supported by the amino acids remobilized from the vegetative tissue, the process in which both amino acid importers and exporters are expected to be involved. Previous studies identified amino acid importers that might function in the amino acid remobilization in wheat. However, the amino acid exporters involved in this process have been unexplored so far. In this study, we have curated the Usually Multiple Amino acids Move In and out Transporter (UMAMIT) family of transporters in wheat. As expected, the majority of UMAMITs were found as triads in the A, B, and D genomes of wheat. Expression analysis using publicly available data sets identified groups of TaUMAMITs expressed in root, leaf, spike, stem and grain tissues, many of which were temporarily regulated. Strong expression of TaUMAMITs was detected in the late senescing leaves and transfer cells in grains, both of which are the expected site of apoplastic amino acid transport during grain filling. Biochemical characterization of selected TaUMAMITs revealed that TaUMAMIT17 shows a strong amino acid export activity and might play a role in amino acid transfer to the grains.


2022 ◽  
Vol 65 (1) ◽  
Author(s):  
Jung-Tae Kim ◽  
Ill-Min Chung ◽  
Mi-Jung Kim ◽  
Jin-Seok Lee ◽  
Beom-Young Son ◽  
...  

AbstractPurple waxy corn is a good source of antioxidant compounds such as anthocyanins and polyphenols. Promotion of its use requires an appropriate assay to determine antioxidant activity. The aim of this study is to verify compatibility of the antioxidant activity assays by comparing five different assays in daily kernel samples of the fresh purple waxy corn during grain filling. The levels of antioxidants measured by 2,2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, and chemiluminescence showed significant positive correlations with the levels measured by the other assays (r = 0.761–0.893; p < 0.01) and with anthocyanin content (r = 0.798–0.924; p < 0.01). Reducing capacity of 2,2ʹ-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) and total phenolic content also showed significant correlations (r = 0.764; p < 0.01). However, during late grain filling, the levels of antioxidants measured by all methods showed strong correlations with each other (r > 0.699; p < 0.05). The inconsistencies among the measurements are largely dependent on the developmental stage of the corn kernel. The combination of at least two assays is required to ensure reliable antioxidant activity estimates, especially for early grain-filling stages. These results will inform efforts to promote fresh purple corn as a source of antioxidants.


Sign in / Sign up

Export Citation Format

Share Document