scholarly journals The parental origin of de novo X-autosome translocations in females with Duchenne muscular dystrophy revealed by M27ß methylation analysis

1990 ◽  
Vol 56 (2-3) ◽  
pp. 135-140 ◽  
Author(s):  
David O. Robinson ◽  
Yvonne Boyd ◽  
David Cockburn ◽  
Morag N. Collinson ◽  
Ian Craig ◽  
...  

SummaryThe parental origin of 3 de novo X-autosome translocations in females with Duchenne Muscular Dystrophy (DMD) was studied by means of methylation analysis using the X-linked probe M27ß. In all three the translocation was found to be paternal in origin. The parental origin of X-autosome translocations in females with and without DMD is compared with other structural abnormalities of the X and with autosomal translocations.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Dominic Scaglioni ◽  
Francesco Catapano ◽  
Matthew Ellis ◽  
Silvia Torelli ◽  
Darren Chambers ◽  
...  

AbstractDuring the last decade, multiple clinical trials for Duchenne muscular dystrophy (DMD) have focused on the induction of dystrophin expression using different strategies. Many of these trials have reported a clear increase in dystrophin protein following treatment. However, the low levels of the induced dystrophin protein have raised questions on its functionality. In our present study, using an unbiased, high-throughput digital image analysis platform, we assessed markers of regeneration and levels of dystrophin associated protein via immunofluorescent analysis of whole muscle sections in 25 DMD boys who received 48-weeks treatment with exon 53 skipping morpholino antisense oligonucleotide (PMO) golodirsen. We demonstrate that the de novo dystrophin induced by exon skipping with PMO golodirsen is capable of conferring a histological benefit in treated patients with an increase in dystrophin associated proteins at the dystrophin positive regions of the sarcolemma in post-treatment biopsies. Although 48 weeks treatment with golodirsen did not result in a significant change in the levels of fetal/developmental myosins for the entire cohort, there was a significant negative correlation between the amount of dystrophin and levels of regeneration observed in different biopsy samples. Our results provide, for the first time, evidence of functionality of induced dystrophin following successful therapeutic intervention in the human.


Author(s):  
Liam Aspit ◽  
Noga Arwas ◽  
Aviva Levitas ◽  
Hanna Krymko ◽  
Yoram Etzion ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) is a progressive muscular damage disorder caused by mutations in dystrophin gene. Cardiomyopathy may first be evident after 10 years of age and increases in incidence with age. We present a boy diagnosed at 18 months with a rare phenotype of DMD in association with early-onset hypertrophic cardiomyopathy (HCM). The cause of DMD is a deletion of exons 51–54 of dystrophin gene. The cause of HCM was verified by whole exome sequencing. Novel missense variations in two genes: MAP2K5 inherited from the mother and ACTN2 inherited from the father, or de novo. The combination of MAP2K5, ACTN2, and dystrophin mutations, could be causing the HCM in our patient. This is the second patient diagnosed, at relatively young age, with DMD and HCM, with novel variations in genes known to cause HCM. This study demonstrates the need for genetic diagnosis to elucidate the underlying pathology of HCM.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jingjing Zhang ◽  
Dingyuan Ma ◽  
Gang Liu ◽  
Yuguo Wang ◽  
An Liu ◽  
...  

Abstract Background Duchenne muscular dystrophy (DMD) is a severe X-linked recessive neuromuscular disorder. Patients with DMD usually have severe and fatal symptoms, including progressive irreversible muscle weakness and atrophy complicated with gastrocnemius muscle pseudohypertrophy. DMD is caused by mutations in the dystrophin-encoding DMD gene, including large rearrangements and point mutations. This retrospective study was aimed at supplying information on our 4-year clinical experience of DMD genetic and prenatal diagnosis at the Department of Prenatal Diagnosis in Women’s Hospital of Nanjing Medical University. Methods Multiplex ligation-dependent probe amplification (MLPA) was used to detect the exon deletions or duplications. And Ion AmpliSeq™ panel for inherited disease was used as the next-generation sequencing (NGS) method to identify the point mutations in exons of DMD gene, but the introns were not sequenced. Results In this study, the large deletions and duplications of DMD gene were detected in 32 (51.6%) of the 62 families, while point mutations were detected in 20 families (32.3%). The remaining 10 families with a negative genetic diagnosis need to be reevaluated for clinical symptoms or be detected by other molecular methods. Notably, six novel mutations were identified, including c.412A > T(p.Lys138*), c.2962delT(p.Ser988Leufs*16), c.6850dupA (p.Ser2284Lysfs*7), c.5139dupA (p.Glu 1714Argfs*5), c.6201_6203delGCCins CCCA(p.Val2069Cysfs*14) and c.10705A > T (p.Lys3569*). In 52 families with positive results, 45 mothers (86.5%) showed positive results during carrier testing and de novo mutations arose in 7 probands. The prenatal diagnosis was offered to 34 fetuses whether the pregnant mother was a carrier or not. As a result, eight male fetuses were affected, three female fetuses were carriers, and the remaining fetuses had no pathogenic mutation. Conclusions This study reported that MLPA and NGS could be used for screening the DMD gene mutations. Furthermore, the stepwise procedure of prenatal diagnosis of DMD gene was shown in our study, which is important for assessing the mutation type of fetuses and providing perinatal care in DMD high-risk families.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ganye Zhao ◽  
Xiaofeng Wang ◽  
Lina Liu ◽  
Peng Dai ◽  
Xiangdong Kong

Abstract Background Relative haplotype dosage (RHDO) approach has been applied in noninvasive prenatal diagnosis (NIPD) of Duchenne muscular dystrophy (DMD). However, the RHDO procedure is relatively complicated and the parental haplotypes need to be constructed. Furthermore, it is not suitable for the diagnosis of de novo mutations or mosaicism in germ cells. Here, we investigated NIPD of DMD using a relative mutation dosage (RMD)-based approach—cell-free DNA Barcode-Enabled Single-Molecule Test (cfBEST), which has not previously been applied in the diagnosis of exon deletion. Methods Five DMD families caused by DMD gene point mutations or exon deletion were recruited for this study. After the breakpoints of exon deletion were precisely mapped with multiple PCR, the genotypes of the fetuses from the five DMD families were inferred using cfBEST, and were further validated by invasive prenatal diagnosis. Results The cfBEST results of the five families indicated that one fetus was female and did not carry the familial molecular alteration, three fetuses were carriers and one was male without the familial mutation. The invasive prenatal diagnosis results were consistent with those of the cfBEST procedure. Conclusion This is the first report of NIPD of DMD using the RMD-based approach. We extended the application of cfBEST from point mutation to exon deletion mutation. The results showed that cfBEST would be suitable for NIPD of DMD caused by different kinds of mutation types.


1986 ◽  
Vol 74 (2) ◽  
pp. 193-196 ◽  
Author(s):  
J. Chelly ◽  
F. Marlhens ◽  
B. Le Marec ◽  
M. Jeanpierre ◽  
M. Lambert ◽  
...  

2013 ◽  
Vol 99 (2) ◽  
pp. 184-187 ◽  
Author(s):  
Lana Strmecki ◽  
Petra Hudler ◽  
Majda Benedik-Dolničar ◽  
Radovan Komel

Sign in / Sign up

Export Citation Format

Share Document