methylation analysis
Recently Published Documents


TOTAL DOCUMENTS

1442
(FIVE YEARS 314)

H-INDEX

79
(FIVE YEARS 9)

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Azadeh Ebrahimi ◽  
Andrey Korshunov ◽  
Guido Reifenberger ◽  
David Capper ◽  
Joerg Felsberg ◽  
...  

AbstractPleomorphic xanthoastrocytoma (PXA) in its classic manifestation exhibits distinct morphological features and is assigned to CNS WHO grade 2 or grade 3. Distinction from glioblastoma variants and lower grade glial and glioneuronal tumors is a common diagnostic challenge. We compared a morphologically defined set of PXA (histPXA) with an independent set, defined by DNA methylation analysis (mcPXA). HistPXA encompassed 144 tumors all subjected to DNA methylation array analysis. Sixty-two histPXA matched to the methylation class mcPXA. These were combined with the cases that showed the mcPXA signature but had received a histopathological diagnosis other than PXA. This cohort constituted a set of 220 mcPXA. Molecular and clinical parameters were analyzed in these groups. Morphological parameters were analyzed in a subset of tumors with FFPE tissue available. HistPXA revealed considerable heterogeneity in regard to methylation classes, with methylation classes glioblastoma and ganglioglioma being the most frequent mismatches. Similarly, the mcPXA cohort contained tumors of diverse histological diagnoses, with glioblastoma constituting the most frequent mismatch. Subsequent analyses demonstrated the presence of canonical pTERT mutations to be associated with unfavorable prognosis among mcPXA. Based on these data, we consider the tumor type PXA to be histologically more varied than previously assumed. Histological approach to diagnosis will predominantly identify cases with the established archetypical morphology. DNA methylation analysis includes additional tumors in the tumor class PXA that share similar DNA methylation profile but lack the typical morphology of a PXA. DNA methylation analysis also assist in separating other tumor types with morphologic overlap to PXA. Our data suggest the presence of canonical pTERT mutations as a robust indicator for poor prognosis in methylation class PXA.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Hiroko Sugawara ◽  
Miki Bundo ◽  
Takaoki Kasahara ◽  
Yutaka Nakachi ◽  
Junko Ueda ◽  
...  

AbstractBipolar disorder (BD) is a severe psychiatric disorder characterized by repeated conflicting manic and depressive states. In addition to genetic factors, complex gene–environment interactions, which alter the epigenetic status in the brain, contribute to the etiology and pathophysiology of BD. Here, we performed a promoter-wide DNA methylation analysis of neurons and nonneurons derived from the frontal cortices of mutant Polg1 transgenic (n = 6) and wild-type mice (n = 6). The mutant mice expressed a proofreading-deficient mitochondrial DNA (mtDNA) polymerase under the neuron-specific CamK2a promoter and showed BD-like behavioral abnormalities, such as activity changes and altered circadian rhythms. We identified a total of 469 differentially methylated regions (DMRs), consisting of 267 neuronal and 202 nonneuronal DMRs. Gene ontology analysis of DMR-associated genes showed that cell cycle-, cell division-, and inhibition of peptide activity-related genes were enriched in neurons, whereas synapse- and GABA-related genes were enriched in nonneurons. Among the DMR-associated genes, Trim2 and Lrpprc showed an inverse relationship between DNA methylation and gene expression status. In addition, we observed that mutant Polg1 transgenic mice shared several features of DNA methylation changes in postmortem brains of patients with BD, such as dominant hypomethylation changes in neurons, which include hypomethylation of the molecular motor gene and altered DNA methylation of synapse-related genes in nonneurons. Taken together, the DMRs identified in this study will contribute to understanding the pathophysiology of BD from an epigenetic perspective.


2022 ◽  
Vol 12 ◽  
Author(s):  
N. Kuzub ◽  
V. Smialkovska ◽  
V. Momot ◽  
V. Moseiko ◽  
O. Lushchak ◽  
...  

Epigenetic clocks are the models, which use CpG methylation levels for the age prediction of an organism. Although there were several epigenetic clocks developed there is a demand for development and evaluation of the relatively accurate and sensitive epigenetic clocks that can be used for routine research purposes. In this study, we evaluated two epigenetic clock models based on the 4 CpG sites and 2 CpG sites in the human genome using the pyrosequencing method for their methylation level estimation. The study sample included 153 people from the Ukrainian population with the age from 0 to 101. Both models showed a high correlation with the chronological age in our study sample (R2 = 0.85 for the 2 CpG model and R2 = 0.92 for the 4 CpG model). We also estimated the accuracy metrics of the age prediction in our study sample. For the age group from 18 to 80 MAD was 5.1 years for the 2 CpG model and 4.1 years for the 4 CpG model. In this regard, we can conclude, that the models evaluated in the study have good age predictive accuracy, and can be used for the epigenetic age evaluation due to the relative simplicity and time-effectiveness.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Yuan Ruan ◽  
Chaofei Niu ◽  
Pengzhan Zhang ◽  
Yanyan Qian ◽  
Xinxin Li ◽  
...  

In this study, two purified polysaccharide fractions, Artp1 and Artp2, were obtained using acid-catalyzed water extraction, and then purified by DEAE-52 cellulose and Sephadex G-200 column chromatography from the crude polysaccharides of Artemisia argyi. Their physicochemical properties were investigated by gel permeation chromatography (GPC), high-performance anion exchange chromatography (HPAEC), Fourier transform infrared (FT-IR), scanning electron microscope (SEM), thermal analysis, and methylation analysis. The average molecular weight (Mw) of Artp1 and Artp2 were estimated to be 42.17 kDa and 175.22 kDa, respectively. Monosaccharide composition analysis revealed that the Rha, Gal, and GalA occupied main proportion in Artp1 with the molar ratio of 25.1:24.7:40.4, while the Rha, Gal, Xly, and GalA occupied the main proportion in Artp2 with the molar ratio of 16.7:13.5:12.8:38.7. Due to the high yield and the relatively high carbohydrate content, the Artp1 was determined by the methylation analysis and NMR. The results of Artp1 indicated that 1,4-GalpA and 1,2,4-Rhap formed the backbone with some 1,2-Rhap, 1,3-Galp, and 1,6-Galp in the backbone or the side chains. Artp1 and Artp2 exhibited effective antioxidant activities by DPPH radical scavenging assay and hydroxyl radical scavenging assay in a dose-dependent manner. These investigations of the polysaccharides from A. argyi. provide a scientific basis for the uses of Artp1 and Artp2 as ingredients in functional foods and medicines.


Epigenomics ◽  
2021 ◽  
Author(s):  
Zhenghao He ◽  
Shihang Zhou ◽  
Ming Yang ◽  
Zhidan Zhao ◽  
Yang Mei ◽  
...  

Aim: To explore potential abnormal epigenetic modifications and immune-cell infiltration in tissues from systemic lupus erythematosus (SLE) patients. Materials & methods: To utilize bioinformatics analysis and ‘wet lab' methods to identify and verify differentially expressed genes in multiple targeted organs in SLE. Results: Seven key genes, IFI44, IFI44L, IFIT1, IFIT3, PLSCR1, RSAD2 and OAS2, which are regulated by epigenetics and may be involved in the pathogenesis of SLE, are identified by combined long noncoding RNA–miRNA–mRNA network analysis and DNA methylation analysis. The results of quantitative reverse transcription PCR, immunohistochemistry and DNA methylation analysis confirmed the potential of these genes as biomarkers. Conclusion: This study reveals the potential mechanisms in SLE from epigenetic modifications and immune-cell infiltration, providing diagnostic biomarkers and therapeutic targets for SLE.


2021 ◽  
pp. clincanres.CCR-21-3762-E.2021
Author(s):  
Jacob E. Berchuck ◽  
Sylvan C. Baca ◽  
Heather M. McClure ◽  
Keegan Korthauer ◽  
Harrison K. Tsai ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1290
Author(s):  
Erol C. Bayraktar ◽  
George Jour

Pigmented epithelioid melanocytoma (PEM) is a unique tumor with significantly pigmented appearance and indolent behavior; however, it can demonstrate cytological atypia and metastasize to local lymph nodes. Clinical and histomorphological overlap between PEM and its lower or higher-grade mimics can make it difficult to distinguish in certain cases. Genomic, transcriptomic and epigenetic data indicate that PEMs are molecularly distinct entities from other melanocytic neoplasms and melanomas. In addition, methylation studies are emerging as a tool that can be useful in difficult cases. In this review, we focus on the clinical, histopathologic and recent insights in the molecular features of pigmented epithelioid melanocytic melanocytomas and their mimics. We also present a challenging case that was resolved using methylation analysis providing a proof of concept for using epigenetic studies for similar challenging cases.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jianbin Du ◽  
Yutaka Nakachi ◽  
Tomoki Kiyono ◽  
Shinya Fujii ◽  
Kiyoto Kasai ◽  
...  

Accumulating evidence suggests that the epigenetic alterations induced by antipsychotics contribute to the therapeutic efficacy. However, global and site-specific epigenetic changes by antipsychotics and those shared by different classes of antipsychotics remain poorly understood. We conducted a comprehensive DNA methylation analysis of human neuroblastoma cells cultured with antipsychotics. The cells were cultured with low and high concentrations of haloperidol or risperidone for 8 days. DNA methylation assay was performed with the Illumina HumanMethylation450 BeadChip. We found that both haloperidol and risperidone tended to cause hypermethylation changes and showed similar DNA methylation changes closely related to neuronal functions. A total of 294 differentially methylated probes (DMPs), including 197 hypermethylated and 97 hypomethylated DMPs, were identified with both haloperidol and risperidone treatment. Gene ontology analysis of the hypermethylated probe-associated genes showed enrichment of genes related to the regulation of neurotransmitter receptor activity and lipoprotein lipase activity. Pathway analysis identified that among the DMP-associated genes, SHANK1 and SHANK2 were the major genes in the neuropsychiatric disorder-related pathways. Our data would be valuable for understanding the mechanisms of action of antipsychotics from an epigenetic viewpoint.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yanjun Xu ◽  
Zhiyu Huang ◽  
Xiaoqing Yu ◽  
Kaiyan Chen ◽  
Yun Fan

Abstract Background Brain metastasis is a common and lethal complication of non-small cell lung cancer (NSCLC). It is mostly diagnosed only after symptoms develop, at which point very few treatment options are available. Therefore, patients who have an increased risk of developing brain metastasis need to be identified early. Our study aimed to identify genomic and epigenomic biomarkers for predicting brain metastasis risk in NSCLC patients. Methods Paired primary lung tumor tissues and either brain metastatic tissues or cerebrospinal fluid (CSF) samples were collected from 29 patients with treatment-naïve advanced NSCLC with central nervous system (CNS) metastases. A control group comprising 31 patients with advanced NSCLC who died without ever developing CNS metastasis was also included. Somatic mutations and DNA methylation levels were examined through capture-based targeted sequencing with a 520-gene panel and targeted bisulfite sequencing with an 80,672 CpG panel. Results Compared to primary lung lesions, brain metastatic tissues harbored numerous unique copy number variations. The tumor mutational burden was comparable between brain metastatic tissue (P = 0.168)/CSF (P = 0.445) and their paired primary lung tumor samples. Kelch-like ECH-associated protein (KEAP1) mutations were detected in primary lung tumor and brain metastatic tissue samples of patients with brain metastasis. KEAP1 mutation rate was significantly higher in patients with brain metastasis than those without (P = 0.031). DNA methylation analysis revealed 15 differentially methylated blocks between primary lung tumors of patients with and without CNS metastasis. A brain metastasis risk prediction model based on these 15 differentially methylated blocks had an area under the curve of 0.94, with 87.1% sensitivity and 82.8% specificity. Conclusions Our analyses revealed 15 differentially methylated blocks in primary lung tumor tissues, which can differentiate patients with and without CNS metastasis. These differentially methylated blocks may serve as predictive biomarkers for the risk of developing CNS metastasis in NSCLC. Additional larger studies are needed to validate the predictive value of these markers.


Sign in / Sign up

Export Citation Format

Share Document