Chronometric calibration of mid-Ordovician to Tournaisian conodont zones: a compilation from recent graphic-correlation and isotope studies

1992 ◽  
Vol 129 (6) ◽  
pp. 709-721 ◽  
Author(s):  
Barry G. Fordham

AbstractThree available graphic-correlation analyses are used to calibrate mid-Palaeozoic conodont zonations: Sweet's scheme for the mid- to Upper Ordovician; Kleffner's for the mid- to Upper Silurian; and Murphy & Berry's for the lower and middle Lower Devonian. The scheme of Sweet is scaled by applying the high-precision U-Pb zircon date of Tucker and others for the Rocklandian and linked with that of Kleffner by scaling the graptolite sequence of the Ordovician-Silurian global stratotype section to fit two similarly derived dates from this sequence. The top of Kleffner's scheme, all of Murphy & Berry's, as well as standard zones to the Frasnian are calibrated by using tie-points of the latest Cambridge-BP time-scale (GTS 89). However, the recent microbeam zircon date by Claoué-Long and others for the Hasselbachtal Devonian-Carboniferous auxiliary stratotype is used to calibrate the standard Famennian zones. Also the similarly derived but preliminary determination reported by Roberts and others from the Isismurra Formation of New South Wales is tentatively taken as the top of the Tournaisian and so used to calibrate Tournaisian zones. Despite the considerable extrapolation required to compile these schemes and their inherent errors, the resultant time-scale closely agrees with other dates of Tucker and others from the Llanvirn as well as the GTS 89 Homerian-Gorstian tie-point. This suggests that stratigraphic methods can be usefully applied to geochronometry. The Llandovery appears to have lasted longer (16 m. y.) than usually envisaged and the Ordovician-Silurian boundary may need to be lowered to approximately 443.5 Ma. Certainly, chrons varied widely in duration and further stratigraphic studies to estimate their relative durations as well as high-resolution dating for their calibration will be crucial to more accurate biochronometries.

Author(s):  
Jeremy Bailey ◽  
Daniel V. Cotton ◽  
Lucyna Kedziora-Chudczer ◽  
Ain De Horta ◽  
Darren Maybour

Abstract We describe the High-Precision Polarimetric Instrument-2 (HIPPI-2) a highly versatile stellar polarimeter developed at the University of New South Wales. Two copies of HIPPI-2 have been built and used on the 60-cm telescope at Western Sydney University’s (WSU) Penrith Observatory, the 8.1-m Gemini North Telescope at Mauna Kea and extensively on the 3.9-m Anglo-Australian Telescope (AAT). The precision of polarimetry, measured from repeat observations of bright stars in the SDSS g′band, is better than 3.5 ppm (parts per million) on the 3.9-m AAT and better than 11 ppm on the 60-cm WSU telescope. The precision is better at redder wavelengths and poorer in the blue. On the Gemini North 8-m telescope, the performance is limited by a very large and strongly wavelength-dependent TP that reached 1000’s of ppm at blue wavelengths and is much larger than we have seen on any other telescope.


2016 ◽  
Vol 8 (6) ◽  
pp. 515 ◽  
Author(s):  
Adrian Fisher ◽  
Michael Day ◽  
Tony Gill ◽  
Adam Roff ◽  
Tim Danaher ◽  
...  

2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Lara Loughrey ◽  
Dan Marshall ◽  
Peter Jones ◽  
Paul Millsteed ◽  
Arthur Main

AbstractThe Emmaville-Torrington emeralds were first discovered in 1890 in quartz veins hosted within a Permian metasedimentary sequence, consisting of meta-siltstones, slates and quartzites intruded by pegmatite and aplite veins from the Moule Granite. The emerald deposit genesis is consistent with a typical granite-related emerald vein system. Emeralds from these veins display colour zonation alternating between emerald and clear beryl. Two fluid inclusion types are identified: three-phase (brine+vapour+halite) and two-phase (vapour+liquid) fluid inclusions. Fluid inclusion studies indicate the emeralds were precipitated from saline fluids ranging from approximately 33 mass percent NaCl equivalent. Formational pressures and temperatures of 350 to 400 °C and approximately 150 to 250 bars were derived from fluid inclusion and petrographic studies that also indicate emerald and beryl precipitation respectively from the liquid and vapour portions of a two-phase (boiling) system. The distinct colour zonations observed in the emerald from these deposits is the first recorded emerald locality which shows evidence of colour variation as a function of boiling. The primary three-phase and primary two-phase FITs are consistent with alternating chromium-rich ‘striped’ colour banding. Alternating emerald zones with colourless beryl are due to chromium and vanadium partitioning in the liquid portion of the boiling system. The chemical variations observed at Emmaville-Torrington are similar to other colour zoned emeralds from other localities worldwide likely precipitated from a boiling system as well.


Sign in / Sign up

Export Citation Format

Share Document