scholarly journals On the values of the Epstein zeta function

1973 ◽  
Vol 14 (1) ◽  
pp. 1-12 ◽  
Author(s):  
John Roderick Smart

Let ζ(s) = σn-s(Res >1) denote the Riemann zeta function; then, as is well known,, whereBmdenotes themth Bernoulli number, In this paper we investigate the possibility of similar evaluations of the Epstein zeta function ζq(s) at the rational integerss = k> 2. Letbe a positive definite quadratic form andwhere the summation is over all pairs of integers except (0, 0). In attempting to evaluate ζq(k) we are guided by Kronecker's first limit formula [11]where γ is Euler's constant,is the Dedekind eta-function, and τ is the complex number in the upper half plane, ℋ, associated with Q by the formulaOn the basis of (1.3) we would expect a formula involving functions of τ. This formula is stated in Theorem 1, (2.13).

1964 ◽  
Vol 6 (4) ◽  
pp. 198-201 ◽  
Author(s):  
Veikko Ennola

Let h (m, n) = αm2 + 2δmn + βn2 be a positive definite quadratic form with determinant αβ–δ2 = 1. It may be put in the shapewith y > 0. We write (for s > 1)The function Zn(s) may be analytically continued over the whole s-plane. Its only singularity is a simple pole with residue π at s = 1.


1959 ◽  
Vol 4 (2) ◽  
pp. 73-80 ◽  
Author(s):  
J. W. S. Cassels

Letbe a positive definite quadratic form with determinant αβ−X2 = 1. A special form of this kind isWe consider the Epstein zeta-functionthe series converging for s > 1. For s ≥ 1·035 Rankin [1] proved the followingSTatement R.The sign of equality is needed only when h is equivalent to Q.


1988 ◽  
Vol 30 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hugh L. Montgomery

Let be a positive definite binary quadratic form with real coefficients and discriminant b2 − 4ac = −1.Among such forms, let . The Epstein zeta function of f is denned to beRankin [7], Cassels [1], Ennola [5], and Diananda [4] between them proved that for every real s > 0,We prove a corresponding result for theta functions. For real α > 0, letThis function satisfies the functional equation(This may be proved by using the formula (4) below, and then twice applying the identity (8).)


Author(s):  
Veikko Ennola

1. Letbe a positive definite binary quadratic form with determinant αβ − δ2 = 1. A special form of this kind isWe consider the Epstein zeta-functionthe series converging for . The function Zh(s) can be analytically continued over the whole s-plane and it is regular except for a simple pole with residue π at s = 1.


1932 ◽  
Vol 28 (3) ◽  
pp. 273-274 ◽  
Author(s):  
E. C. Titchmarsh

It was proved by Littlewood that, for every large positive T, ζ (s) has a zero β + iγ satisfyingwhere A is an absolute constant.


1935 ◽  
Vol 54 ◽  
pp. 12-16 ◽  
Author(s):  
A. C. Aitken

This paper concludes the study of fitting polynomials by Least Squares, treated in two previous papers. The problem being concerned with the minimum of a positive definite quadratic form, it makes for conciseness to use matrix notation. We shall therefore adopt the following conventions :—The n values of the variable x, of the data u0, u1, …, un−1, of certain polynomials qr(x) entering into the solution, and so on, will be regarded compositely as vectors. They will be imagined as having their components or elements disposed in column array, but when written in full will be written horizontally, to save space, enclosed by curled brackets. Row vectors, when written out in full, will be enclosed by square brackets. In the shorter notation we shall write, for example, u, x for column vectors, u′, x′ for the row vectors obtained by transposition. The vectors occurring in the problem will be the following:—


2013 ◽  
Vol 97 (540) ◽  
pp. 455-460 ◽  
Author(s):  
John Melville

Apéry's constant is the value of ζ (3) where ζ is the Riemann zeta function. ThusThis constant arises in certain mathematical and physical contexts (in physics for example ζ (3) arises naturally in the computation of the electron's gyromagnetic ratio using quantum electrodynamics) and has attracted a great deal of interest, not least the fact that it was proved to be irrational by the French mathematician Roger é and named after him. See [1,2].Numerous series representations have been obtained for ζ (3) many of which are rather complicated [3]. é used one such series in his irrationality proof. It is not known whether ζ (3) is transcendental, a question whose resolution might be helped by a study of an appropriate series representation of ζ (3).


1959 ◽  
Vol 1 (1) ◽  
pp. 47-63 ◽  
Author(s):  
E. S. Barnes ◽  
G. E. Wall

Let be a positive definite quadratic form of determinant D, and let M be the minimum of f(x) for integral x ≠ 0. Then we set and the maximum being over all positive forms f in n variables. f is said to be extreme if y γn(f) is a local maximum for varying f, absolutely extreme if y γ(f) is an absolute maximum, i.e. if y γ(f) = γn.


1967 ◽  
Vol 15 (4) ◽  
pp. 309-313 ◽  
Author(s):  
Bruce C. Berndt

The generalised zeta-function ζ(s, α) is defined bywhere α>0 and Res>l. Clearly, ζ(s, 1)=, where ζ(s) denotes the Riemann zeta-function. In this paper we consider a general class of Dirichlet series satisfying a functional equation similar to that of ζ(s). If ø(s) is such a series, we analogously define ø(s, α). We shall derive a representation for ø(s, α) which will be valid in the entire complex s-plane. From this representation we determine some simple properties of ø(s, α).


1978 ◽  
Vol 21 (1) ◽  
pp. 25-32 ◽  
Author(s):  
J. Knopfmacher

Let the Laurent expansion of the Riemann zeta function ξ(s) about s=1 be written in the formIt has been discovered independently by many authors that, in terms of this notation, the coefficient


Sign in / Sign up

Export Citation Format

Share Document