scholarly journals Certain congruences on a completely regular semigroup

1974 ◽  
Vol 15 (2) ◽  
pp. 109-120 ◽  
Author(s):  
Thomas L. Pirnot

Congruences on a semigroup S such that the corresponding factor semigroups are of a special type have been considered by several authors. Frequently it has been difficult to obtain worthwhile results unless restrictions have been imposed on the type of semigroup considered. For example, Munn [6] has studied minimum group congruences on an inverse semigroup, R. R. Stoll [9] has considered the maximal group homomorphic image of a Rees matrix semigroup which immediately determines the smallest group congruence on a Rees matrix semigroup. The smallest semilattice congruence on a general or commutative semigroup has been studied by Tamura and Kimura [10], Yamada [12] and Petrich [8]. In this paper we shall study congruences ρ on a completely regular semigroup S such that S/ρ is a semilattice of groups. We shall call such a congruence an SG-congruence.

Author(s):  
Dr. D. Mrudula Devi Et. al.

This paper deals with some results on commutative semigroups. We consider (s,.) is externally commutative right zero semigroup is regular if it is intra regular and (s,.) is externally commutative semigroup then every inverse semigroup  is u – inverse semigroup. We will also prove that if (S,.) is a H -  semigroup then weakly cancellative laws hold in H - semigroup. In one case we will take (S,.) is commutative left regular semi group and we will prove that (S,.) is ∏ - inverse semigroup. We will also consider (S,.) is commutative weakly balanced semigroup  and then prove every left (right) regular semigroup is weakly separate, quasi separate and separate. Additionally, if (S,.) is completely regular semigroup we will prove that (S,.) is permutable and weakly separtive. One a conclusing note we will show and prove some theorems related to permutable semigroups and GC commutative Semigroups.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 306
Author(s):  
Sreeja V K

Let S be a unit regular semigroup with group of units G = G(S) and semilattice of idempotents E = E(S). Then for every there is a such that Then both xu and ux are idempotents and we can write or .Thus every element of a unit regular inverse monoid is a product of a group element and an idempotent. It is evident that every L-class and every R-class contains exactly one idempotent where L and R are two of Greens relations. Since inverse monoids are R unipotent, every element of a unit regular inverse monoid can be written as s = eu where the idempotent part e is unique and u is a unit. A completely regular semigroup is a semigroup in which every element is in some subgroup of the semigroup. A Clifford semigroup is a completely regular inverse semigroup. Characterization of unit regular inverse monoids in terms of the group of units and the semilattice of idempotents is a problem often attempted and in this direction we have studied the structure of unit regular inverse monoids and Clifford monoids. 


1966 ◽  
Vol 7 (3) ◽  
pp. 145-159 ◽  
Author(s):  
J. M. Howie ◽  
G. Lallement

In recent developments in the algebraic theory of semigroups attention has been focussing increasingly on the study of congruences, in particular on lattice-theoretic properties of the lattice of congruences. In most cases it has been found advantageous to impose some restriction on the type of semigroup considered, such as regularity, commutativity, or the property of being an inverse semigroup, and one of the principal tools has been the consideration of special congruences. For example, the minimum group congruence on an inverse semigroup has been studied by Vagner [21] and Munn [13], the maximum idempotent-separating congruence on a regular or inverse semigroup by the authors separately [9, 10] and by Munn [14], and the minimum semilattice congruence on a general or commutative semigroup by Tamura and Kimura [19], Yamada [22], Clifford [3] and Petrich [15]. In this paper we study regular semigroups and our primary concern is with the minimum group congruence, the minimum band congruence and the minimum semilattice congruence, which we shall consistently denote by α β and η respectively.


2012 ◽  
Vol 87 (3) ◽  
pp. 462-479 ◽  
Author(s):  
JANUSZ KONIECZNY

AbstractFor an arbitrary set $X$ (finite or infinite), denote by $\mathcal {I}(X)$ the symmetric inverse semigroup of partial injective transformations on $X$. For $ \alpha \in \mathcal {I}(X)$, let $C(\alpha )=\{ \beta \in \mathcal {I}(X): \alpha \beta = \beta \alpha \}$ be the centraliser of $ \alpha $ in $\mathcal {I}(X)$. For an arbitrary $ \alpha \in \mathcal {I}(X)$, we characterise the transformations $ \beta \in \mathcal {I}(X)$ that belong to $C( \alpha )$, describe the regular elements of $C(\alpha )$, and establish when $C( \alpha )$ is an inverse semigroup and when it is a completely regular semigroup. In the case where $\operatorname {dom}( \alpha )=X$, we determine the structure of $C(\alpha )$in terms of Green’s relations.


1981 ◽  
Vol 33 (4) ◽  
pp. 893-900 ◽  
Author(s):  
J. A. Gerhard ◽  
Mario Petrich

A semigroup which is a union of groups is said to be completely regular. If in addition the idempotents form a subsemigroup, the semigroup is said to be orthodox and is called an orthogroup. A completely regular semigroup S is provided in a natural way with a unary operation of inverse by letting a-l for a ∈ S be the group inverse of a in the maximal subgroup of S to which a belongs. This unary operation satisfies the identities(1)(2)(3)In fact a completely regular semigroup can be defined as a unary semigroup (a semigroup with an added unary operation) satisfying these identities. An orthogroup can be characterized as a completely regular semigroup satisfying the additional identity(4)


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 327 ◽  
Author(s):  
Yingcang Ma ◽  
Xiaohong Zhang ◽  
Xiaofei Yang ◽  
Xin Zhou

Neutrosophic extended triplet group is a new algebra structure and is different from the classical group. In this paper, the notion of generalized neutrosophic extended triplet group is proposed and some properties are discussed. In particular, the following conclusions are strictly proved: (1) an algebraic system is a generalized neutrosophic extended triplet group if and only if it is a quasi-completely regular semigroup; (2) an algebraic system is a weak commutative generalized neutrosophic extended triplet group if and only if it is a quasi-Clifford semigroup; (3) for each n ∈ Z + , n ≥ 2 , ( Z n , ⊗ ) is a commutative generalized neutrosophic extended triplet group; (4) for each n ∈ Z + , n ≥ 2 , ( Z n , ⊗ ) is a commutative neutrosophic extended triplet group if and only if n = p 1 p 2 ⋯ p m , i.e., the factorization of n has only single factor.


2001 ◽  
Vol 44 (1) ◽  
pp. 173-186 ◽  
Author(s):  
Tanveer A. Khan ◽  
Mark V. Lawson

AbstractMcAlister proved that every regular locally inverse semigroup can be covered by a regular Rees matrix semigroup over an inverse semigroup by means of a homomorphism which is locally an isomorphism. We generalize this result to the class of semigroups with local units whose local submonoids have commuting idempotents and possessing what we term a ‘McAlister sandwich function’.AMS 2000 Mathematics subject classification: Primary 20M10. Secondary 20M17


Sign in / Sign up

Export Citation Format

Share Document