scholarly journals Remarks on Weak Compactness in L1(μ,X)

1977 ◽  
Vol 18 (1) ◽  
pp. 87-91 ◽  
Author(s):  
J. Diestel

Let (Ω,Σ,μ) be a finite measure space and X a Banach space. Denote by L1 (μ,X) the Banach space of (equivalence classes of) μ-strongly measurable X-valued Bochner integrable functions f:Ω→X normed byThe problem of characterizing the relatively weakly compact subsets of L1(Ω, X) remains open. It is known that for a bounded subset of L1(μ, X) to be relatively weakly compact it is necessary that the set be uniformly integrable; recall that K ⊆ L1, (μ, X) is uniformly integrable whenever given ε >0 there exists δ > 0 such that if μ (E) ≦ δ then ∫E∥f∥ dμ ≦ δ, for all f ∈ K. S. Chatterji has noted that in case X is reflexive this condition is also sufficient [4]. At present unless one assumes that both X and X* have the Radon-Nikodym Property (see [1]), a rather severe restriction which, for purposes of potential applicability, is tantamount to assuming reflexivity, no good sufficient conditions for weak compactness in L1(μ, X) exist. This note puts forth such sufficient conditions; the basic tool is the recent factorization method of W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczynski [3].

2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Tijani Pakhrou

Let X be a Banach space. Let 1≤p<∞ and denote by Lp(μ,X) the Banach space of all X-valued Bochner p-integrable functions on a certain positive complete σ-finite measure space (Ω,Σ,μ), endowed with the usual p-norm. In this paper, the theory of lifting is used to prove that, for any weakly compact subset W of X, the set Lp(μ,W) is N-simultaneously proximinal in Lp(μ,X) for any arbitrary monotonous norm N in Rn.


Author(s):  
Roshdi Khalil

Let T be a measure space and m a finite measure on T. The space of p-Bochner integrable functions defined on T with values in a Banach space X is denoted by Lp(T, X). It is well known (1) that Lp (T, X) is a Banach space under the normA subspace E in a Banachh space F is said to be proximinal if for each xF there is at least one xE such thatThe element y is called best approximant of x in E.


1999 ◽  
Vol 42 (2) ◽  
pp. 139-148 ◽  
Author(s):  
José Bonet ◽  
Paweł Dománski ◽  
Mikael Lindström

AbstractEvery weakly compact composition operator between weighted Banach spaces of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.


1993 ◽  
Vol 45 (3) ◽  
pp. 449-469 ◽  
Author(s):  
M. A. Akcoglu ◽  
Y. Déniel

AbstractLet ℝ denote the real line. Let {Tt}tєℝ be a measure preserving ergodic flow on a non atomic finite measure space (X, ℱ, μ). A nonnegative function φ on ℝ is called a weight function if ∫ℝ φ(t)dt = 1. Consider the weighted ergodic averagesof a function f X —> ℝ, where {θk} is a sequence of weight functions. Some sufficient and some necessary and sufficient conditions are given for the a.e. convergence of Akf, in particular for a special case in whichwhere φ is a fixed weight function and {(ak, rk)} is a sequence of pairs of real numbers such that rk > 0 for all k. These conditions are obtained by a combination of the methods of Bellow-Jones-Rosenblatt, developed to deal with moving ergodic averages, and the methods of Broise-Déniel-Derriennic, developed to deal with unbounded weight functions.


1980 ◽  
Vol 32 (2) ◽  
pp. 421-430 ◽  
Author(s):  
Teck-Cheong Lim

Let X be a Banach space and B a bounded subset of X. For each x ∈ X, define R(x) = sup{‖x – y‖ : y ∈ B}. If C is a nonempty subset of X, we call the number R = inƒ{R(x) : x ∈ C} the Chebyshev radius of B in C and the set the Chebyshev center of B in C. It is well known that if C is weakly compact and convex, then and if, in addition, X is uniformly convex, then the Chebyshev center is unique; see e.g., [9].Let {Bα : α ∈ ∧} be a decreasing net of bounded subsets of X. For each x ∈ X and each α ∈ ∧, define


1976 ◽  
Vol 19 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Joseph Bogin

In [7], Goebel, Kirk and Shimi proved the following:Theorem. Let X be a uniformly convex Banach space, K a nonempty bounded closed and convex subset of X, and F:K→K a continuous mapping satisfying for each x, y∈K:(1)where ai≥0 and Then F has a fixed point in K.In this paper we shall prove that this theorem remains true in any Banach space X, provided that K is a nonempty, weakly compact convex subset of X and has normal structure (see Definition 1 below).


Positivity ◽  
2020 ◽  
Author(s):  
Marian Nowak

Abstract Let X be a Banach space and E be a perfect Banach function space over a finite measure space $$(\Omega ,\Sigma ,\lambda )$$ ( Ω , Σ , λ ) such that $$L^\infty \subset E\subset L^1$$ L ∞ ⊂ E ⊂ L 1 . Let $$E'$$ E ′ denote the Köthe dual of E and $$\tau (E,E')$$ τ ( E , E ′ ) stand for the natural Mackey topology on E. It is shown that every nuclear operator $$T:E\rightarrow X$$ T : E → X between the locally convex space $$(E,\tau (E,E'))$$ ( E , τ ( E , E ′ ) ) and a Banach space X is Bochner representable. In particular, we obtain that a linear operator $$T:L^\infty \rightarrow X$$ T : L ∞ → X between the locally convex space $$(L^\infty ,\tau (L^\infty ,L^1))$$ ( L ∞ , τ ( L ∞ , L 1 ) ) and a Banach space X is nuclear if and only if its representing measure $$m_T:\Sigma \rightarrow X$$ m T : Σ → X has the Radon-Nikodym property and $$|m_T|(\Omega )=\Vert T\Vert _{nuc}$$ | m T | ( Ω ) = ‖ T ‖ nuc (= the nuclear norm of T). As an application, it is shown that some natural kernel operators on $$L^\infty $$ L ∞ are nuclear. Moreover, it is shown that every nuclear operator $$T:L^\infty \rightarrow X$$ T : L ∞ → X admits a factorization through some Orlicz space $$L^\varphi $$ L φ , that is, $$T=S\circ i_\infty $$ T = S ∘ i ∞ , where $$S:L^\varphi \rightarrow X$$ S : L φ → X is a Bochner representable and compact operator and $$i_\infty :L^\infty \rightarrow L^\varphi $$ i ∞ : L ∞ → L φ is the inclusion map.


1977 ◽  
Vol 24 (2) ◽  
pp. 129-138 ◽  
Author(s):  
R. J. Fleming ◽  
J. E. Jamison

AbstractLet Lp(Ω, K) denote the Banach space of weakly measurable functions F defined on a finite measure space and taking values in a separable Hilbert space K for which ∥ F ∥p = ( ∫ | F(ω) |p)1/p < + ∞. The bounded Hermitian operators on Lp(Ω, K) (in the sense of Lumer) are shown to be of the form , where B(ω) is a uniformly bounded Hermitian operator valued function on K. This extends the result known for classical Lp spaces. Further, this characterization is utilized to obtain a new proof of Cambern's theorem describing the surjective isometries of Lp(Ω, K). In addition, it is shown that every adjoint abelian operator on Lp(Ω, K) is scalar.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Moosa Gabeleh ◽  
Naseer Shahzad

LetAandBbe two nonempty subsets of a Banach spaceX. A mappingT:A∪B→A∪Bis said to be cyclic relatively nonexpansive ifT(A)⊆BandT(B)⊆AandTx-Ty≤x-yfor all (x,y)∈A×B. In this paper, we introduce a geometric notion of seminormal structure on a nonempty, bounded, closed, and convex pair of subsets of a Banach spaceX. It is shown that if (A,B) is a nonempty, weakly compact, and convex pair and (A,B) has seminormal structure, then a cyclic relatively nonexpansive mappingT:A∪B→A∪Bhas a fixed point. We also discuss stability of fixed points by using the geometric notion of seminormal structure. In the last section, we discuss sufficient conditions which ensure the existence of best proximity points for cyclic contractive type mappings.Erratum to “Seminormal Structure and Fixed Points of Cyclic Relatively Nonexpansive Mappings”


Sign in / Sign up

Export Citation Format

Share Document