scholarly journals Nuclear operators on Banach function spaces

Positivity ◽  
2020 ◽  
Author(s):  
Marian Nowak

Abstract Let X be a Banach space and E be a perfect Banach function space over a finite measure space $$(\Omega ,\Sigma ,\lambda )$$ ( Ω , Σ , λ ) such that $$L^\infty \subset E\subset L^1$$ L ∞ ⊂ E ⊂ L 1 . Let $$E'$$ E ′ denote the Köthe dual of E and $$\tau (E,E')$$ τ ( E , E ′ ) stand for the natural Mackey topology on E. It is shown that every nuclear operator $$T:E\rightarrow X$$ T : E → X between the locally convex space $$(E,\tau (E,E'))$$ ( E , τ ( E , E ′ ) ) and a Banach space X is Bochner representable. In particular, we obtain that a linear operator $$T:L^\infty \rightarrow X$$ T : L ∞ → X between the locally convex space $$(L^\infty ,\tau (L^\infty ,L^1))$$ ( L ∞ , τ ( L ∞ , L 1 ) ) and a Banach space X is nuclear if and only if its representing measure $$m_T:\Sigma \rightarrow X$$ m T : Σ → X has the Radon-Nikodym property and $$|m_T|(\Omega )=\Vert T\Vert _{nuc}$$ | m T | ( Ω ) = ‖ T ‖ nuc (= the nuclear norm of T). As an application, it is shown that some natural kernel operators on $$L^\infty $$ L ∞ are nuclear. Moreover, it is shown that every nuclear operator $$T:L^\infty \rightarrow X$$ T : L ∞ → X admits a factorization through some Orlicz space $$L^\varphi $$ L φ , that is, $$T=S\circ i_\infty $$ T = S ∘ i ∞ , where $$S:L^\varphi \rightarrow X$$ S : L φ → X is a Bochner representable and compact operator and $$i_\infty :L^\infty \rightarrow L^\varphi $$ i ∞ : L ∞ → L φ is the inclusion map.

1970 ◽  
Vol 17 (2) ◽  
pp. 121-125 ◽  
Author(s):  
C. W. McArthur

It is known (13, p. 92) that each closed normal cone in a weakly sequentially complete locally convex space is regular and fully regular. Part of the main theorem of this paper shows that a certain amount of weak sequential completeness is necessary in order that each closed normal cone be regular. Specifically, it is shown that each closed normal cone in a Fréchet space is regular if and only if each closed subspace with an unconditional basis is weakly sequentially complete. If E is a strongly separable conjugate of a Banach space it is shown that each closed normal cone in E is fully regular. If E is a Banach space with an unconditional basis it is shown that each closed normal cone in E is fully regular if and only if E is the conjugate of a Banach space.


1971 ◽  
Vol 14 (1) ◽  
pp. 119-120 ◽  
Author(s):  
Robert H. Lohman

A well-known embedding theorem of Banach and Mazur [1, p. 185] states that every separable Banach space is isometrically isomorphic to a subspace of C[0, 1], establishing C[0, 1] as a universal separable Banach space. The embedding theorem one encounters in a course in topological vector spaces states that every Hausdorff locally convex space (l.c.s.) is topologically isomorphic to a subspace of a product of Banach spaces.


1988 ◽  
Vol 103 (3) ◽  
pp. 497-502
Author(s):  
Susumu Okada ◽  
Yoshiaki Okazaki

Let X be an infinite-dimensional Banach space. It is well-known that the space of X-valued, Pettis integrable functions is not always complete with respect to the topology of convergence in mean, that is, the uniform convergence of indefinite integrals (see [14]). The Archimedes integral introduced in [9] does not suffer from this defect. For the Archimedes integral, functions to be integrated are allowed to take values in a locally convex space Y larger than the space X while X accommodates the values of indefinite integrals. Moreover, there exists a locally convex space Y, into which X is continuously embedded, such that the space ℒ(μX, Y) of Y-valued, Archimedes integrable functions is identical to the completion of the space of X valued, simple functions with repect to the toplogy of convergence in mean, for each non-negative measure μ (see [9]).


1991 ◽  
Vol 33 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Paulette Saab ◽  
Brenda Smith

Let Ω: be a compact Hausdorff space, let E be a Banach space, and let C(Ω, E) stand for the Banach space of continuous E-valued functions on Ω under supnorm. It is well known [3, p. 182] that if F is a Banach space then any bounded linear operator T:C(Ω, E)→ F has a finitely additive vector measure G defined on the σ-field of Borel subsets of Ω with values in the space ℒ(E, F**) of bounded linear operators from E to the second dual F** of F. The measure G is said to represent T. The purpose of this note is to study the interplay between certain properties of the operator T and properties of the representing measure G. Precisely, one of our goals is to study when one can characterize nuclear operators in terms of their representing measures. This is of course motivated by a well-known theorem of L. Schwartz [5] (see also [3, p. 173]) concerning nuclear operators on spaces C(Ω) of continuous scalar-valued functions. The study of nuclear operators on spaces C(Ω, E) of continuous vector-valued functions was initiated in [1], where the author extended Schwartz's result in case E* has the Radon-Nikodym property. In this paper, we will show that the condition on E* to have the Radon-Nikodym property is necessary to have a Schwartz's type theorem. This leads to a new characterization of dual spaces E* with the Radon-Nikodym property. In [2], it was shown that if T:C(Ω, E)→ F is nuclear than its representing measure G takes its values in the space (E, F) of nuclear operators from E to F. One of the results of this paper is that if T:C(Ω, E)→ F is nuclear then its representing measure G is countably additive and of bounded variation as a vector measure taking its values in (E, F) equipped with the nuclear norm. Finally, we show by easy examples that the above mentioned conditions on the representing measure G do not characterize nuclear operators on C(Ω, E) spaces, and we also look at cases where nuclear operators are indeed characterized by the above two conditions. For all undefined notions and terminologies, we refer the reader to [3].


1982 ◽  
Vol 34 (2) ◽  
pp. 406-410 ◽  
Author(s):  
Waleed Deeb

Introduction. Let f be a modulus, ei = (δij) and E = {ei, i = 1, 2, …}. The L(f) spaces were created (to the best of our knowledge) by W. Ruckle in [2] in order to construct an example to answer a question of A. Wilansky. It turned out that these spaces are interesting spaces. For example lp, 0 < p ≦ 1 is an L(f) space with f(x) = xp, and every FK space contains an L(f) space [2]. A natural question is: For which f is L(f) a locally convex space? It is known that L(f) ⊆ l1, for all f modulus (see [2]), and l1 is the smallest locally convex FK space in which E is bounded (see [1]). Thus the question becomes: For which f does L(f) equal l1? In this paper we characterize such f. (An FK space need not be locally convex here.) We also characterize those f for which L(f) contains a convex ball. The final result of this paper is to show that if f satisfies f(x · y) ≦ f(x) · f(y) and L(f) ≠ l1 then L(f) contains no infinite dimensional subspace isomorphic to a Banach space.


1981 ◽  
Vol 84 ◽  
pp. 85-118 ◽  
Author(s):  
Jorge Aragona

Let K be a compact set in a complex metrizable locally convex space E and F a complex Banach space. The study of the space of holomorphic germs ℋ(K; F) endowed with the Nachbin topology was undertaken by several authors.


1985 ◽  
Vol 26 (1) ◽  
pp. 19-23
Author(s):  
Volker Wrobel

The concept of superdiagonal forms for n × nmatrices T with complex entries has been extended by J. R. Ringrose [4] to the setting of compact linear operators T:X→X acting on a complex Banach space X. In a recent paper D. Koros [2] generalized Ringrose's approach to the case of compact linear operators T:X→X on a complex locally convex space X. The reason why both authors confine their attention to the class of compact linear operators is that the existence of proper closed invariant subspaces is, aside from Riesz-Schauder theory, the main tool in their construction. In the present paper it is shown that the existence of superdiagonal forms possesses a certain permanence property in the following sense.


2013 ◽  
Vol 87 (3) ◽  
pp. 353-365 ◽  
Author(s):  
HOSSEIN JAVANSHIRI ◽  
RASOUL NASR-ISFAHANI

AbstractFor a locally compact group $ \mathcal{G} $, we introduce and study a class of locally convex topologies $\tau $ on the measure algebra $M( \mathcal{G} )$ of $ \mathcal{G} $. In particular, we show that the strong dual of $(M( \mathcal{G} ), \tau )$ can be identified with a closed subspace of the Banach space $M\mathop{( \mathcal{G} )}\nolimits ^{\ast } $; we also investigate some properties of the locally convex space $(M( \mathcal{G} ), \tau )$.


1986 ◽  
Vol 100 (1) ◽  
pp. 137-143
Author(s):  
Brian Jefferies

AbstractSufficient conditions are given for a set to be a core for the generator of a weakly integrable semigroup on a locally convex space. The conditions are illustrated by semigroups of unbounded operators on a Banach space.


1979 ◽  
Vol 28 (1) ◽  
pp. 23-26
Author(s):  
Kung-Fu Ng

AbstractLet K be a nonempty compact set in a Hausdorff locally convex space, and F a nonempty family of upper semicontinuous convex-like functions from K into [–∞, ∞). K is partially ordered by F in a natural manner. It is shown among other things that each isotone, upper semicontinuous and convex-like function g: K → [ – ∞, ∞) attains its K-maximum at some extreme point of K which is also a maximal element of K.Subject classification (Amer. Math. Soc. (MOS) 1970): primary 46 A 40.


Sign in / Sign up

Export Citation Format

Share Document