scholarly journals Remarks on the commutativity of the radicals of group algebras

1979 ◽  
Vol 20 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Shigeo Koshitani

Let K be an arbitrary field with characteristic p > 0, G a finite group of order pag′ with (p, g′) = 1, P a p-Sylow subgroup of G and G′ the commutator subgroup of G. For a ring R denote by J(R) the Jacobson radical of R and by Z(R) the centre of R. We write KG for the group algebra of G over K.

1975 ◽  
Vol 16 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Wolfgang Hamernik

In this note relations between the structure of a finite group G and ringtheoretical properties of the group algebra FG over a field F with characteristic p > 0 are investigated. Denoting by J(R) the Jacobson radical and by Z(R) the centre of the ring R, our aim is to prove the following theorem generalizing results of Wallace [10] and Spiegel [9]:Theorem. Let G be a finite group and let F be an arbitrary field of characteristic p > 0. Denoting by BL the principal block ideal of the group algebra FG the following statements are equivalent:(i) J(B1) ≤ Z(B1)(ii) J(B1)is commutative,(iii) G is p-nilpotent with abelian Sylowp-subgroups.


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


2010 ◽  
Vol 09 (02) ◽  
pp. 305-314 ◽  
Author(s):  
HARISH CHANDRA ◽  
MEENA SAHAI

Let K be a field of characteristic p ≠ 2,3 and let G be a finite group. Necessary and sufficient conditions for δ3(U(KG)) = 1, where U(KG) is the unit group of the group algebra KG, are obtained.


2012 ◽  
Vol 12 (01) ◽  
pp. 1250130
Author(s):  
GEOFFREY JANSSENS

We give a description of the primitive central idempotents of the rational group algebra ℚG of a finite group G. Such a description is already investigated by Jespers, Olteanu and del Río, but some unknown scalars are involved. Our description also gives answers to their questions.


1962 ◽  
Vol 5 (3) ◽  
pp. 103-108 ◽  
Author(s):  
D. A. R. Wallace

It is well known that when the characteristic p(≠ 0) of a field divides the order of a finite group, the group algebra possesses a non-trivial radical and that, if p does not divide the order of the group, the group algebra is semi-simple. A group algebra has a centre, a basis for which consists of the class-sums. The radical may be contained in this centre; we obtain necessary and sufficient conditions for this to happen.


1964 ◽  
Vol 4 (2) ◽  
pp. 152-173 ◽  
Author(s):  
S. B. Conlon

Let be a finite group, a field. A twisted group algebra A() on over is an associative algebra whose elements are the formal linear combinations and in which the product (A)(B) is a non-zero multiple of (AB), where AB is the group product of A, B ∈: . One gets the ordinary group algebra () by taking each fA, B ≠ 1.


1982 ◽  
Vol 25 (1) ◽  
pp. 69-71 ◽  
Author(s):  
Peter Brockhaus

This paper contains a new proof of a theorem of D. A. R. Wallace [5] in case of a p-solvable group. An alternative proof has been given by K. Motose [4].Let G be a finite group, F a field with prime characteristic p, P a Sylow p-subgroup of G. JFG will denote the Jacobson radical of FG.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Jonas Gonçalves Lopes

Given a partial action α of a group G on the group algebra FH, where H is a finite group and F is a field whose characteristic p divides the order of H, we investigate the associativity question of the partial crossed product FH *α G. If FH *α G is associative for any G and any α, then FH is called strongly associative. We characterize the strongly associative modular group algebras FH with H being a p-solvable group.


1968 ◽  
Vol 16 (2) ◽  
pp. 127-134 ◽  
Author(s):  
D. A. R. Wallace

Over a field of characteristic p>0 the group algebra of a finite group has a unique maximal nilpotent ideal, the Jacobson radical of the algebra. The powers of the radical form a decreasing and ultimately vanishing series of ideals and it would be of interest to determine the least vanishing power. Apart from the work of Jennings (3) on p-groups little is known in general (cf. (5)) about this particular power of the radical (cf. Remarks of Brauer in (4), p. 144. Problem 15). In this paper we give non-trivial lower bounds for the index of the least vanishing power of the radical when the group is p-soluble. Of the lower bounds we give we show that that lower bound, which is dependent solely on the order of the group, is the best possible such bound and that this bound is invalid if the assumption of p-solubility is omitted.


1962 ◽  
Vol 5 (4) ◽  
pp. 158-159 ◽  
Author(s):  
D. A. R. Wallace

Over a field of characteristic p the group algebra of a finite group has a non-trivial radical if and only if the order of the group is divisible by the prime p. It would be of interest to determine the powers of the radical in the non-semi-simple case [2, p. 61]. In the particular case of p-groups the solution to the problem is known through the work of Jennings [6]. We here consider the special case of group algebras whose radicals have square zero and we relate this condition to the structure of the group itself.


Sign in / Sign up

Export Citation Format

Share Document