scholarly journals On well-bounded operators of class Г

1983 ◽  
Vol 24 (1) ◽  
pp. 1-5
Author(s):  
Adnan A. S. Jibril

Let T be a linear operator acting in a Banach space X. It has been shown by Smart [5] and Ringrose [3] that, if X is reflexive, then T is well-bounded if and only if it may be expressed in the formwhere {E(λ)} is a suitable family of projections in X and the integral exists as the strong limit of Riemann sums.

1974 ◽  
Vol 17 (1) ◽  
pp. 145-147
Author(s):  
F.-H. Vasilescu

Let T be a linear operator on a Banach space X and consider the sequence of rangeswhere the inclusions are not necessarily proper. The linear subspaces Xn=TnX (n>0) are, in general, not closed but they have some remarkable properties [1], [2]. Let X0=X and denote by |x|0 (x∈X0) the norm of X0.


1978 ◽  
Vol 21 (1) ◽  
pp. 17-23 ◽  
Author(s):  
M. J. Crabb ◽  
J. Duncan

Let A be a complex unital Banach algebra. An element u∈A is a norm unitary if(For the algebra of all bounded operators on a Banach space, the norm unitaries arethe invertible isometries.) Given a norm unitary u∈A, we have Sp(u)⊃Γ, where Sp(u) denotes the spectrum of u and Γ denotes the unit circle in C. If Sp(u)≠Γ we may suppose, by replacing eiθu, that . Then there exists h ∈ A such that


1997 ◽  
Vol 56 (2) ◽  
pp. 303-318 ◽  
Author(s):  
Maurice Hasson

Let T: B → B be a bounded linear operator on the complex Banach space B and let f(z) be analytic on a domain D containing the spectrum Sp(T) of T. Then f(T) is defined bywhere C is a contour surrounding SP(T) and contained in D.


1969 ◽  
Vol 10 (1) ◽  
pp. 73-76 ◽  
Author(s):  
J. Duncan

In this note we shall employ the notation of [1] without further mention. Thus X denotes a normed space and P the subset of X × X′ given byGiven a subalgebra of B(X), the set {Φ(X,f):(x,f) ∈ P} of evaluation functional on is denoted by II. We shall prove that if X is a Banach space and if contains all the bounded operators of finite rank, then Π is norm closed in ′. We give an example to show that Π need not be weak* closed in ″. We show also that FT need not be norm closed in ″ if X is not complete.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 169-174
Author(s):  
Mahendra Shahi

A bounded linear operator which has a finite index and which is defined on a Banach space is often referred to in the literature as a Fredholm operator. Fredholm operators are important for a variety of reasons, one being the role that their index plays in global analysis. The aim of this paper is to prove the spectral theorem for compact operators in refined form and to describe some properties of the essential spectrum of general bounded operators by the use of the theorem of Fredholm operators. For this, we have analysed the Fredholm operator which is defined in a Banach space for some special characterisations. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10399 BIBECHANA 11(1) (2014) 169-174


1981 ◽  
Vol 90 (2) ◽  
pp. 259-264 ◽  
Author(s):  
J. R. Partington

The inequalityfor fεLp(− ∞, ∞)or Lp(0, ∞) (1≤p ≤ ∞), and its extensionfor T an Hermitian or dissipative linear operator, in general unbounded, on a Banach space X, for xεX, have been considered by many authors. In particular, forms of inequality (1) have been given by Hadamard(7), Landau(15), and Hardy and Little-wood(8),(9). The second inequality has been discussed by Kallman and Rota(11), Bollobás (2) and Kato (12), and numerous further references may be found in the recent papers of Kwong and Zettl(i4) and Bollobás and Partington(3).


2019 ◽  
Vol 99 (2) ◽  
pp. 274-283
Author(s):  
AMANOLLAH ASSADI ◽  
MOHAMAD ALI FARZANEH ◽  
HAJI MOHAMMAD MOHAMMADINEJAD

We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.


1968 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. J. Bernau

Recall that the spectrum, σ(T), of a linear operator T in a complex Banach space is the set of complex numbers λ such that T—λI does not have a densely defined bounded inverse. It is known [7, § 5.1] that σ(T) is a closed subset of the complex plane C. If T is not bounded, σ(T) may be empty or the whole of C. If σ(T) ≠ C and T is closed the spectral mapping theorem, is valid for complex polynomials p(z) [7, §5.7]. Also, if T is closed and λ ∉ σ(T), (T–λI)−1 is everywhere defined.


1981 ◽  
Vol 22 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Ridgley Lange

Let X be a complex Banach space and let T be a bounded linear operator on X. Then T is decomposable if for every finite open cover of σ(T) there are invariant subspaces Yi(i= 1, 2, …, n) such that(An invariant subspace Y is spectral maximal [for T] if it contains every invariant subspace Z for which σ(T|Z) ⊂ σ(T|Y).).


1989 ◽  
Vol 31 (1) ◽  
pp. 71-72
Author(s):  
J. E. Jamison ◽  
Pei-Kee Lin

Let X be a complex Banach space. For any bounded linear operator T on X, the (spatial) numerical range of T is denned as the setIf V(T) ⊆ R, then T is called hermitian. Vidav and Palmer (see Theorem 6 of [3, p. 78] proved that if the set {H + iK:H and K are hermitian} contains all operators, then X is a Hilbert space. It is natural to ask the following question.


Sign in / Sign up

Export Citation Format

Share Document