scholarly journals Weak amenability of free products of hyperbolic and amenable groups

2022 ◽  
pp. 1-4
Author(s):  
Ignacio Vergara

Abstract We show that if G is an amenable group and H is a hyperbolic group, then the free product $G\ast H$ is weakly amenable. A key ingredient in the proof is the fact that $G\ast H$ is orbit equivalent to $\mathbb{Z}\ast H$ .

2011 ◽  
Vol 32 (2) ◽  
pp. 427-466 ◽  
Author(s):  
LEWIS BOWEN

AbstractIn previous work, the author introduced a measure-conjugacy invariant for sofic group actions called sofic entropy. Here, it is proven that the sofic entropy of an amenable group action equals its classical entropy. The proof uses a new measure-conjugacy invariant called upper-sofic entropy and a theorem of Rudolph and Weiss for the entropy of orbit-equivalent actions relative to the orbit changeσ-algebra.


1992 ◽  
Vol 35 (2) ◽  
pp. 315-328 ◽  
Author(s):  
Niels Grønbæk

This paper is concerned with two notions of cohomological triviality for Banach algebras, weak amenability and cyclic amenability. The first is defined within Hochschild cohomology and the latter within cyclic cohomology. Our main result is that where ℱ is a Banach algebraic free product of two Banach algebras and ℬ. It follows that cyclic amenability is preserved under the formation of free products.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


2007 ◽  
Vol 310 (1) ◽  
pp. 57-69
Author(s):  
N.S. Romanovskii ◽  
John S. Wilson

1983 ◽  
Vol 3 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Colin E. Sutherland

AbstractIf K is a countable amenable group acting freely and ergodically on a probability space (Γ, μ), and G is an arbitrary countable amenable group, we construct an injection of the space of unitary representations of G into the space of unitary 1-cocyles for K on (Γ, μ); this injection preserves intertwining operators. We apply this to show that for many of the standard non-type-I amenable groups H, the representation theory of H contains that of every countable amenable group.


1979 ◽  
Vol 31 (6) ◽  
pp. 1329-1338 ◽  
Author(s):  
A. M. Brunner ◽  
R. G. Burns

In [5] M. Hall Jr. proved, without stating it explicitly, that every finitely generated subgroup of a free group is a free factor of a subgroup of finite index. This result was made explicit, and used to give simpler proofs of known results, in [1] and [7]. The standard generalization to free products was given in [2]: If, following [13], we call a group in which every finitely generated subgroup is a free factor of a subgroup of finite index an M. Hall group, then a free product of M. Hall groups is again an M. Hall group. The recent appearance of [13], in which this result is reproved, and the rather restrictive nature of the property of being an M. Hall group, led us to attempt to determine the structure of such groups. In this paper we go a considerable way towards achieving this for those M. Hall groups which are both finitely generated and accessible.


2020 ◽  
Vol 63 (2) ◽  
pp. 335-347
Author(s):  
Warren Dicks ◽  
Zoran Šunić

AbstractWe construct total orders on the vertex set of an oriented tree. The orders are based only on up-down counts at the interior vertices and the edges along the unique geodesic from a given vertex to another.As an application, we provide a short proof (modulo Bass–Serre theory) of Vinogradov’s result that the free product of left-orderable groups is left-orderable.


2001 ◽  
Vol 44 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Joseph M. Rosenblatt ◽  
George A. Willis

AbstractLet G be an infinite discrete amenable group or a non-discrete amenable group. It is shown how to construct a net (fα) of positive, normalized functions in L1(G) such that the net converges weak* to invariance but does not converge strongly to invariance. The solution of certain linear equations determined by colorings of the Cayley graphs of the group are central to this construction.


2008 ◽  
Vol 28 (1) ◽  
pp. 87-124 ◽  
Author(s):  
A. H. DOOLEY ◽  
V. YA. GOLODETS ◽  
D. J. RUDOLPH ◽  
S. D. SINEL’SHCHIKOV

AbstractA new approach to actions of countable amenable groups with completely positive entropy (cpe), allowing one to answer some basic questions in this field, was recently developed. The question of the existence of cpe actions which are not Bernoulli was raised. In this paper, we prove that every countable amenable groupG, which contains an element of infinite order, has non-Bernoulli cpe actions. In fact we can produce, for any$h \in (0, \infty ]$, an uncountable family of cpe actions of entropyh, which are pairwise automorphically non-isomorphic. These actions are given by a construction which we call co-induction. This construction is related to, but different from the standard induced action. We study the entropic properties of co-induction, proving that ifαGis co-induced from an actionαΓof a subgroup Γ, thenh(αG)=h(αΓ). We also prove that ifαΓis a non-Bernoulli cpe action of Γ, thenαGis also non-Bernoulli and cpe. Hence the problem of finding an uncountable family of pairwise non-isomorphic cpe actions of the same entropy is reduced to one of finding an uncountable family of non-Bernoulli cpe actions of$\mathbb Z$, which pairwise satisfy a property we call ‘uniform somewhat disjointness’. We construct such a family using refinements of the classical cutting and stacking methods.


Author(s):  
Karl Auinger

It is shown that the free product of two residually finite combinatorial strict inverse semigroups in general is not residually finite. In contrast, the free product of a residually finite combinatorial strict inverse semigroup and a semilattice is residually finite.


Sign in / Sign up

Export Citation Format

Share Document