On a construction of unitary cocycles and the representation theory of amenable groups

1983 ◽  
Vol 3 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Colin E. Sutherland

AbstractIf K is a countable amenable group acting freely and ergodically on a probability space (Γ, μ), and G is an arbitrary countable amenable group, we construct an injection of the space of unitary representations of G into the space of unitary 1-cocyles for K on (Γ, μ); this injection preserves intertwining operators. We apply this to show that for many of the standard non-type-I amenable groups H, the representation theory of H contains that of every countable amenable group.

2014 ◽  
Vol 29 (03n04) ◽  
pp. 1430001 ◽  
Author(s):  
V. K. DOBREV

We give a review of some group-theoretical results related to nonrelativistic holography. Our main playgrounds are the Schrödinger equation and the Schrödinger algebra. We first recall the interpretation of nonrelativistic holography as equivalence between representations of the Schrödinger algebra describing bulk fields and boundary fields. One important result is the explicit construction of the boundary-to-bulk operators in the framework of representation theory, and that these operators and the bulk-to-boundary operators are intertwining operators. Further, we recall the fact that there is a hierarchy of equations on the boundary, invariant with respect to Schrödinger algebra. We also review the explicit construction of an analogous hierarchy of invariant equations in the bulk, and that the two hierarchies are equivalent via the bulk-to-boundary intertwining operators. The derivation of these hierarchies uses a mechanism introduced first for semisimple Lie groups and adapted to the nonsemisimple Schrödinger algebra. These require development of the representation theory of the Schrödinger algebra which is reviewed in some detail. We also recall the q-deformation of the Schrödinger algebra. Finally, the realization of the Schrödinger algebra via difference operators is reviewed.


2001 ◽  
Vol 44 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Joseph M. Rosenblatt ◽  
George A. Willis

AbstractLet G be an infinite discrete amenable group or a non-discrete amenable group. It is shown how to construct a net (fα) of positive, normalized functions in L1(G) such that the net converges weak* to invariance but does not converge strongly to invariance. The solution of certain linear equations determined by colorings of the Cayley graphs of the group are central to this construction.


2008 ◽  
Vol 28 (1) ◽  
pp. 87-124 ◽  
Author(s):  
A. H. DOOLEY ◽  
V. YA. GOLODETS ◽  
D. J. RUDOLPH ◽  
S. D. SINEL’SHCHIKOV

AbstractA new approach to actions of countable amenable groups with completely positive entropy (cpe), allowing one to answer some basic questions in this field, was recently developed. The question of the existence of cpe actions which are not Bernoulli was raised. In this paper, we prove that every countable amenable groupG, which contains an element of infinite order, has non-Bernoulli cpe actions. In fact we can produce, for any$h \in (0, \infty ]$, an uncountable family of cpe actions of entropyh, which are pairwise automorphically non-isomorphic. These actions are given by a construction which we call co-induction. This construction is related to, but different from the standard induced action. We study the entropic properties of co-induction, proving that ifαGis co-induced from an actionαΓof a subgroup Γ, thenh(αG)=h(αΓ). We also prove that ifαΓis a non-Bernoulli cpe action of Γ, thenαGis also non-Bernoulli and cpe. Hence the problem of finding an uncountable family of pairwise non-isomorphic cpe actions of the same entropy is reduced to one of finding an uncountable family of non-Bernoulli cpe actions of$\mathbb Z$, which pairwise satisfy a property we call ‘uniform somewhat disjointness’. We construct such a family using refinements of the classical cutting and stacking methods.


2020 ◽  
Vol 2020 (766) ◽  
pp. 45-60
Author(s):  
Peter H. Kropholler ◽  
Conchita Martínez-Pérez

AbstractIn this paper we prove that the homological dimension of an elementary amenable group over an arbitrary commutative coefficient ring is either infinite or equal to the Hirsch length of the group. Established theory gives simple group theoretical criteria for finiteness of homological dimension and so we can infer complete information about this invariant for elementary amenable groups. Stammbach proved the special case of solvable groups over coefficient fields of characteristic zero in an important paper dating from 1970.


2019 ◽  
Vol 2019 (747) ◽  
pp. 277-298 ◽  
Author(s):  
Tomasz Downarowicz ◽  
Dawid Huczek ◽  
Guohua Zhang

Abstract We prove that for any infinite countable amenable group G, any {\varepsilon>0} and any finite subset {K\subset G} , there exists a tiling (partition of G into finite “tiles” using only finitely many “shapes”), where all the tiles are {(K,\varepsilon)} -invariant. Moreover, our tiling has topological entropy zero (i.e., subexponential complexity of patterns). As an application, we construct a free action of G (in the sense that the mappings, associated to elements of G other than the unit, have no fixed points) on a zero-dimensional space, such that the topological entropy of this action is zero.


2016 ◽  
Vol 81 (4) ◽  
pp. 1555-1562 ◽  
Author(s):  
MAURO DI NASSO ◽  
ISAAC GOLDBRING ◽  
RENLING JIN ◽  
STEVEN LETH ◽  
MARTINO LUPINI ◽  
...  

AbstractM. Beiglböck, V. Bergelson, and A. Fish proved that if G is a countable amenable group and A and B are subsets of G with positive Banach density, then the product set AB is piecewise syndetic. This means that there is a finite subset E of G such that EAB is thick, that is, EAB contains translates of any finite subset of G. When G = ℤ, this was first proven by R. Jin. We prove a quantitative version of the aforementioned result by providing a lower bound on the density (with respect to a Følner sequence) of the set of witnesses to the thickness of EAB. When G = ℤd, this result was first proven by the current set of authors using completely different techniques.


2011 ◽  
Vol 32 (2) ◽  
pp. 427-466 ◽  
Author(s):  
LEWIS BOWEN

AbstractIn previous work, the author introduced a measure-conjugacy invariant for sofic group actions called sofic entropy. Here, it is proven that the sofic entropy of an amenable group action equals its classical entropy. The proof uses a new measure-conjugacy invariant called upper-sofic entropy and a theorem of Rudolph and Weiss for the entropy of orbit-equivalent actions relative to the orbit changeσ-algebra.


2013 ◽  
Vol 65 (5) ◽  
pp. 1005-1019 ◽  
Author(s):  
Brian Forrest ◽  
Tianxuan Miao

AbstractLet G be a locally compact group. Let AM(G) (A0(G))denote the closure of A(G), the Fourier algebra of G in the space of bounded (completely bounded) multipliers of A(G). We call a locally compact group M-weakly amenable if AM(G) has a bounded approximate identity. We will show that when G is M-weakly amenable, the algebras AM(G) and A0(G) have properties that are characteristic of the Fourier algebra of an amenable group. Along the way we show that the sets of topologically invariant means associated with these algebras have the same cardinality as those of the Fourier algebra.


Sign in / Sign up

Export Citation Format

Share Document