scholarly journals Sofic entropy and amenable groups

2011 ◽  
Vol 32 (2) ◽  
pp. 427-466 ◽  
Author(s):  
LEWIS BOWEN

AbstractIn previous work, the author introduced a measure-conjugacy invariant for sofic group actions called sofic entropy. Here, it is proven that the sofic entropy of an amenable group action equals its classical entropy. The proof uses a new measure-conjugacy invariant called upper-sofic entropy and a theorem of Rudolph and Weiss for the entropy of orbit-equivalent actions relative to the orbit changeσ-algebra.

2018 ◽  
Vol 28 (02) ◽  
pp. 1850028 ◽  
Author(s):  
Kesong Yan ◽  
Fanping Zeng

We consider mean proximality and mean Li–Yorke chaos for [Formula: see text]-systems, where [Formula: see text] is a countable discrete infinite amenable group. We prove that if a countable discrete infinite abelian group action is mean sensitive and there is a mean proximal pair consisting of a transitive point and a periodic point, then it is mean Li–Yorke chaotic. Moreover, we give some characterizations of mean proximal systems for general countable discrete infinite amenable groups.


1981 ◽  
Vol 1 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Klaus Schmidt

AbstractThis paper discusses the relations between the following properties o finite measure preserving ergodic actions of a countable group G: strong ergodicity (i.e. the non-existence of almost invariant sets), uniqueness of G-invariant means on the measure space carrying the group action, and certain cohomological properties. Using these properties one can characterize all actions of amenable groups and of groups with Kazhdan's property T. For groups which fall in between these two definations these notions lead to some interesting examples.


2022 ◽  
pp. 1-4
Author(s):  
Ignacio Vergara

Abstract We show that if G is an amenable group and H is a hyperbolic group, then the free product $G\ast H$ is weakly amenable. A key ingredient in the proof is the fact that $G\ast H$ is orbit equivalent to $\mathbb{Z}\ast H$ .


2019 ◽  
Vol 40 (10) ◽  
pp. 2593-2680 ◽  
Author(s):  
LEWIS BOWEN

Kolmogorov–Sinai entropy is an invariant of measure-preserving actions of the group of integers that is central to classification theory. There are two recently developed invariants, sofic entropy and Rokhlin entropy, that generalize classical entropy to actions of countable groups. These new theories have counterintuitive properties such as factor maps that increase entropy. This survey article focusses on examples, many of which have not appeared before, that highlight the differences and similarities with classical theory.


2016 ◽  
Vol 26 (07) ◽  
pp. 1650110
Author(s):  
Xiankun Ren ◽  
Wenxiang Sun

Let [Formula: see text] be a compact metric space and [Formula: see text] a countable infinite discrete amenable group acting on [Formula: see text]. Like in the [Formula: see text]-action cases we define the notion of local entropy and by it we bound the difference between metric entropy and that of a partition, and bound the difference between topological entropy and that of a separated set, which generalize Theorems 1(1) and 1(2) in [Newhouse, 1989] from [Formula: see text]-actions to amenable group actions. We further prove that the entropy function [Formula: see text] is upper semi-continuous on [Formula: see text] for an asymptotic entropy expansive amenable group action.


1983 ◽  
Vol 3 (1) ◽  
pp. 129-133 ◽  
Author(s):  
Colin E. Sutherland

AbstractIf K is a countable amenable group acting freely and ergodically on a probability space (Γ, μ), and G is an arbitrary countable amenable group, we construct an injection of the space of unitary representations of G into the space of unitary 1-cocyles for K on (Γ, μ); this injection preserves intertwining operators. We apply this to show that for many of the standard non-type-I amenable groups H, the representation theory of H contains that of every countable amenable group.


2018 ◽  
Vol 38 (9) ◽  
pp. 4467-4482
Author(s):  
Xiaojun Huang ◽  
◽  
Jinsong Liu ◽  
Changrong Zhu ◽  
◽  
...  

2021 ◽  
Vol 256 (2) ◽  
pp. 121-145
Author(s):  
Dawid Huczek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document