scholarly journals The prediction of live weight from body measurements on female Holstein calves by digital image analysis – ERRATUM

2013 ◽  
Vol 151 (4) ◽  
pp. 577-577
Author(s):  
S. OZKAYA
2012 ◽  
Vol 151 (4) ◽  
pp. 570-576 ◽  
Author(s):  
S. OZKAYA

SUMMARYThe objective of the current study was to determine the accuracy of the prediction of live weight (LW) from body measurements (BMs) by using digital image analysis on female Holstein calves. The calves were measured with a measurement stick and digital image analysis. The following linear parameters were taken: body length (BL), wither height (WH), chest depth (CD), hip height (HH) and hip width (HW). LW and BMs were recorded at birth, at weaning and at 24 weeks of age. Regression coefficients, which included all BMs at birth, gave a low R2 value (66·7%), but the R2 value was found to be 87·6 and 86·0% at weaning and 24 weeks of age, respectively. A high correlation coefficient was found among LW and CD, HH and HW at weaning (0·90, 0·91 and 090, respectively) and at 24 weeks of age (0·89, 0·90 and 0·91, respectively). The results confirm that for female Holstein calves, digital image analysis is an effective measuring system for the prediction of LW from BMs.


2012 ◽  
Vol 52 (10) ◽  
pp. 917 ◽  
Author(s):  
Serkan Ozkaya

The objective of this study was to determine the accuracy of body measurements (BM) in Holstein female calves using digital image analysis. BM including body length, wither height, chest depth, hip height, and hip width of calves were recorded by stick and tape measurements at birth, weaning and 24 weeks of age. Then photos of calves were taken while calves were standing in a squeeze chute by a digital camera and were analysed by image analysis software to obtain BM of each calf from the image in centimetres. After comparing the actual and predicted BM, the accuracy was determined as 71, 97 and 99% for body length, 69, 87 and 99% for wither height, 43, 98 and 99% for chest depth, 74, 99 and 99% for hip height and 53, 99 and 98% for hip width at birth, weaning and 24 weeks of age, respectively. The difference between actual and predicted BM was significant at birth (P < 0.01). Although there were numerical differences between actual and predicted BM, the differences were not significant at weaning and 24 weeks of age (P > 0.01). According to these results, the BM estimation of Holstein female calves using digital image analysis produced high prediction accuracy at weaning and 24 weeks of age, but not at birth. The data presented in this study indicate that the digital image analysis provides very close agreement and reality for prediction of BM of Holstein female calves.


2016 ◽  
Vol 56 (12) ◽  
pp. 2060 ◽  
Author(s):  
Serkan Ozkaya ◽  
Wojciech Neja ◽  
Sylwia Krezel-Czopek ◽  
Adam Oler

The objective of this study was to predict bodyweight and estimate body measurements of Limousin cattle using digital image analysis (DIA). Body measurements including body length, wither height, chest depth, and hip height of cattle were determined both manually (by measurements stick) and by using DIA. Body area was determined by using DIA. The images of Limousin cattle were taken while cattle were standing in a squeeze chute by a digital camera and analysed by image analysis software to obtain body measurements of each animal. While comparing the actual and predicted body measurements, the accuracy was determined as 98% for wither height, 97% for hip height, 94% for chest depth and 90.6% for body length. Regression analysis between body area and bodyweight yielded an equation with R2 of 61.5%. The regression equation, which included all body traits, resulted in an R2 value of 88.7%. The results indicated that DIA can be used for accurate prediction of body measurements and bodyweight of Limousin cattle.


2010 ◽  
Vol 72 (1) ◽  
pp. 48-52 ◽  
Author(s):  
Md. Bazlur R. Mollah ◽  
Md. A. Hasan ◽  
Md. A. Salam ◽  
Md. A. Ali

2000 ◽  
Vol 10 (2) ◽  
pp. 7-9
Author(s):  
Yaser Natour ◽  
Christine Sapienza ◽  
Mark Schmalz ◽  
Savita Collins

2019 ◽  
Vol 8 (3) ◽  
pp. 11 ◽  
Author(s):  
Gustav Stålhammar ◽  
Thonnie Rose O. See ◽  
Stephen Phillips ◽  
Stefan Seregard ◽  
Hans E. Grossniklaus

2008 ◽  
Vol 14 (2) ◽  
pp. 192-200 ◽  
Author(s):  
Hiromasa Tanaka ◽  
Gojiro Nakagami ◽  
Hiromi Sanada ◽  
Yunita Sari ◽  
Hiroshi Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document