scholarly journals On the stability of polling models with multiple servers

1998 ◽  
Vol 35 (04) ◽  
pp. 925-935 ◽  
Author(s):  
D. Down

The stability of polling models is examined using associated fluid limit models. Examples are presented which generalize existing results in the literature or provide new stability conditions while in both cases providing simple and intuitive proofs of stability. The analysis is performed for both general single server models and specific multiple server models.

1998 ◽  
Vol 35 (4) ◽  
pp. 925-935 ◽  
Author(s):  
D. Down

The stability of polling models is examined using associated fluid limit models. Examples are presented which generalize existing results in the literature or provide new stability conditions while in both cases providing simple and intuitive proofs of stability. The analysis is performed for both general single server models and specific multiple server models.


1994 ◽  
Vol 7 (3) ◽  
pp. 437-456 ◽  
Author(s):  
Muhammad El-Taha ◽  
Shaler Stidham

We extend our studies of sample-path stability to multiserver input-output processes with conditional output rates that may depend on the state of the system and other auxiliary processes. Our results include processes with countable as well as uncountable state spaces. We establish rate stability conditions for busy period durations as well as the input during busy periods. In addition, stability conditions for multiserver queues with possibly heterogeneous servers are given for the workload, attained service, and queue length processes. The stability conditions can be checked from parameters of primary processes, and thus can be verified a priori. Under the rate stability conditions, we provide stable versions of Little's formula for single server as well as multiserver queues. Our approach leads to extensions of previously known results. Since our results are valid pathwise, non-stationary as well as stationary processes are covered.


1991 ◽  
Vol 28 (1) ◽  
pp. 245-250 ◽  
Author(s):  
Erol Gelenbe ◽  
Peter Glynn ◽  
Karl Sigman

We study single-server queueing models where in addition to regular arriving customers, there are negative arrivals. A negative arrival has the effect of removing a customer from the queue. The way in which this removal is specified gives rise to several different models. Unlike the standard FIFOGI/GI/1 model, the stability conditions for these new models may depend upon more than just the arrival and service rates; the entire distributions of interarrival and service times may be involved.


1991 ◽  
Vol 28 (01) ◽  
pp. 245-250 ◽  
Author(s):  
Erol Gelenbe ◽  
Peter Glynn ◽  
Karl Sigman

We study single-server queueing models where in addition to regular arriving customers, there are negative arrivals. A negative arrival has the effect of removing a customer from the queue. The way in which this removal is specified gives rise to several different models. Unlike the standard FIFO GI/GI/1 model, the stability conditions for these new models may depend upon more than just the arrival and service rates; the entire distributions of interarrival and service times may be involved.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Farid Taghinavaz

Abstract In this paper, I study the conditions imposed on a normal charged fluid so that the causality and stability criteria hold for this fluid. I adopt the newly developed General Frame (GF) notion in the relativistic hydrodynamics framework which states that hydrodynamic frames have to be fixed after applying the stability and causality conditions. To do this, I take a charged conformal matter in the flat and 3 + 1 dimension to analyze better these conditions. The causality condition is applied by looking to the asymptotic velocity of sound hydro modes at the large wave number limit and stability conditions are imposed by looking to the imaginary parts of hydro modes as well as the Routh-Hurwitz criteria. By fixing some of the transports, the suitable spaces for other ones are derived. I observe that in a dense medium having a finite U(1) charge with chemical potential μ0, negative values for transports appear and the second law of thermodynamics has not ruled out the existence of such values. Sign of scalar transports are not limited by any constraints and just a combination of vector transports is limited by the second law of thermodynamic. Also numerically it is proved that the most favorable region for transports $$ {\tilde{\upgamma}}_{1,2}, $$ γ ˜ 1 , 2 , coefficients of the dissipative terms of the current, is of negative values.


Author(s):  
Bo Xiao ◽  
Hak-Keung Lam ◽  
Zhixiong Zhong

AbstractThe main challenge of the stability analysis for general polynomial control systems is that non-convex terms exist in the stability conditions, which hinders solving the stability conditions numerically. Most approaches in the literature impose constraints on the Lyapunov function candidates or the non-convex related terms to circumvent this problem. Motivated by this difficulty, in this paper, we confront the non-convex problem directly and present an iterative stability analysis to address the long-standing problem in general polynomial control systems. Different from the existing methods, no constraints are imposed on the polynomial Lyapunov function candidates. Therefore, the limitations on the Lyapunov function candidate and non-convex terms are eliminated from the proposed analysis, which makes the proposed method more general than the state-of-the-art. In the proposed approach, the stability for the general polynomial model is analyzed and the original non-convex stability conditions are developed. To solve the non-convex stability conditions through the sum-of-squares programming, the iterative stability analysis is presented. The feasible solutions are verified by the original non-convex stability conditions to guarantee the asymptotic stability of the general polynomial system. The detailed simulation example is provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed approach is more capable to find feasible solutions for the general polynomial control systems when compared with the existing ones.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440002 ◽  
Author(s):  
K. AVRACHENKOV ◽  
E. MOROZOV ◽  
R. NEKRASOVA ◽  
B. STEYAERT

In this paper, we study a new retrial queueing system with N classes of customers, where a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system with (exponential) constant retrial time (with rate [Formula: see text]) regardless of the orbit size. Such a system is motivated by multiple telecommunication applications, for instance wireless multi-access systems, and transmission control protocols. First, we present a review of some corresponding recent results related to a single-orbit retrial system. Then, using a regenerative approach, we deduce a set of necessary stability conditions for such a system. We will show that these conditions have a very clear probabilistic interpretation. We also performed a number of simulations to show that the obtained conditions delimit the stability domain with a remarkable accuracy, being in fact the (necessary and sufficient) stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-type retrial systems that we focus on.


1996 ◽  
Vol 28 (02) ◽  
pp. 540-566 ◽  
Author(s):  
Peter G. Harrison ◽  
Edwige Pitel

We derive expressions for the generating function of the equilibrium queue length probability distribution in a single server queue with general service times and independent Poisson arrival streams of both ordinary, positive customers and negative customers which eliminate a positive customer if present. For the case of first come first served queueing discipline for the positive customers, we compare the killing strategies in which either the last customer in the queue or the one in service is removed by a negative customer. We then consider preemptive-restart with resampling last come first served queueing discipline for the positive customers, combined with the elimination of the customer in service by a negative customer—the case of elimination of the last customer yields an analysis similar to first come first served discipline for positive customers. The results show different generating functions in contrast to the case where service times are exponentially distributed. This is also reflected in the stability conditions. Incidently, this leads to a full study of the preemptive-restart with resampling last come first served case without negative customers. Finally, approaches to solving the Fredholm integral equation of the first kind which arises, for instance, in the first case are considered as well as an alternative iterative solution method.


2018 ◽  
Vol 149 ◽  
pp. 01073
Author(s):  
K. Ben Addi ◽  
A. Diouri ◽  
N. Khachani ◽  
A. Boukhari

This paper investigates the mineralogical evolution of sulfoaluminate clinker elaborated from moroccan prime materials limestone, shale and phosphogypsum as a byproduct from phosphoric acid factories. The advantage of the production of this type of clinker is related to the low clinkerisation temperature which is known around 1250°C, and to less consumption quantity of limestone thus enabling less CO2 emissions during the decarbonation process compared to that of Portland cement. In this study we determine the stability conditions of belite sulfoaluminate clinker containing belite (C2S) ye’elimite (C4A3$) and ternesite (C5S2$). The hydration compounds of this clinker are also investigated. The monitoring of the synthesized and hydrated phases is performed by X-Ray Diffraction and Infrared spectroscopy. The results show the formation of ternesite at 800°C and the stabilization of clinker containing y’elminite, belite and ternesite at temperatures between 1100 and 1250°C.


Sign in / Sign up

Export Citation Format

Share Document