The collision branching process

2004 ◽  
Vol 41 (04) ◽  
pp. 1033-1048 ◽  
Author(s):  
Anyue Chen ◽  
Phil Pollett ◽  
Hanjun Zhang ◽  
Junping Li

We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.

2004 ◽  
Vol 41 (4) ◽  
pp. 1033-1048 ◽  
Author(s):  
Anyue Chen ◽  
Phil Pollett ◽  
Hanjun Zhang ◽  
Junping Li

We consider a branching model, which we call the collision branching process (CBP), that accounts for the effect of collisions, or interactions, between particles or individuals. We establish that there is a unique CBP, and derive necessary and sufficient conditions for it to be nonexplosive. We review results on extinction probabilities, and obtain explicit expressions for the probability of explosion and the expected hitting times. The upwardly skip-free case is studied in some detail.


2012 ◽  
Vol 44 (1) ◽  
pp. 226-259 ◽  
Author(s):  
Anyue Chen ◽  
Junping Li ◽  
Yiqing Chen ◽  
Dingxuan Zhou

We consider the uniqueness and extinction properties of the interacting branching collision process (IBCP), which consists of two strongly interacting components: an ordinary Markov branching process and a collision branching process. We establish that there is a unique IBCP, and derive necessary and sufficient conditions for it to be nonexplosive that are easily checked. Explicit expressions are obtained for the extinction probabilities for both regular and irregular cases. The associated expected hitting times are also considered. Examples are provided to illustrate our results.


2012 ◽  
Vol 44 (01) ◽  
pp. 226-259 ◽  
Author(s):  
Anyue Chen ◽  
Junping Li ◽  
Yiqing Chen ◽  
Dingxuan Zhou

We consider the uniqueness and extinction properties of the interacting branching collision process (IBCP), which consists of two strongly interacting components: an ordinary Markov branching process and a collision branching process. We establish that there is a unique IBCP, and derive necessary and sufficient conditions for it to be nonexplosive that are easily checked. Explicit expressions are obtained for the extinction probabilities for both regular and irregular cases. The associated expected hitting times are also considered. Examples are provided to illustrate our results.


1997 ◽  
Vol 34 (03) ◽  
pp. 575-582 ◽  
Author(s):  
M. González ◽  
M. Molina

In this paper the L 2-convergence of a superadditive bisexual Galton–Watson branching process is studied. Necessary and sufficient conditions for the convergence of the suitably normed process are given. In the final section, a result about one of the most important bisexual models is proved.


1973 ◽  
Vol 5 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Norman Kaplan

A population model is constructed which combines the ideas of a discrete time branching process with random environments and a continuous time non-homogeneous Markov branching process. The extinction problem is considered and necessary and sufficient conditions for extinction are determined. Also discussed are limit theorems for what corresponds to the supercritical case.


2002 ◽  
Vol 39 (3) ◽  
pp. 479-490 ◽  
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

In this paper, we introduce a bisexual Galton-Watson branching process with mating function dependent on the population size in each generation. Necessary and sufficient conditions for the process to become extinct with probability 1 are investigated for two possible conditions on the sequence of mating functions. Some results for the probability generating functions associated with the process are also given.


2007 ◽  
Vol 83 (3) ◽  
pp. 423-438 ◽  
Author(s):  
Yaoming Yu ◽  
Guorong Wang

AbstractIn this paper we establish the definition of the generalized inverse A(2)T, Swhich is a {2} inverse of a matrixAwith prescribed imageTand kernelsover an associative ring, and give necessary and sufficient conditions for the existence of the generalized inverseand some explicit expressions forof a matrix A over an associative ring, which reduce to the group inverse or {1} inverses. In addition, we show that for an arbitrary matrixAover an associative ring, the Drazin inverse Ad, the group inverse Agand the Moore-Penrose inverse. if they exist, are all the generalized inverse A(2)T, S.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1408
Author(s):  
Cristina Gutiérrez ◽  
Carmen Minuesa

In this paper, we present the first stochastic process to describe the interaction of predator and prey populations with sexual reproduction. Specifically, we introduce a two-type two-sex controlled branching model. This process is a two-type branching process, where the first type corresponds to the predator population and the second one to the prey population. While each population is described via a two-sex branching model, the interaction and survival of both groups is modelled through control functions depending on the current number of individuals of each type in the ecosystem. In view of their potential for the conservation of species, we provide necessary and sufficient conditions for the ultimate extinction of both species, the fixation of one of them and the coexistence of both of them. Moreover, the description of the present predator–prey two-sex branching process on the fixation events can be performed in terms of the behaviour of a one-type two-sex branching process with a random control on the number of individuals, which is also introduced and analysed.


1997 ◽  
Vol 34 (3) ◽  
pp. 575-582 ◽  
Author(s):  
M. González ◽  
M. Molina

In this paper the L2-convergence of a superadditive bisexual Galton–Watson branching process is studied. Necessary and sufficient conditions for the convergence of the suitably normed process are given. In the final section, a result about one of the most important bisexual models is proved.


1973 ◽  
Vol 5 (01) ◽  
pp. 37-54 ◽  
Author(s):  
Norman Kaplan

A population model is constructed which combines the ideas of a discrete time branching process with random environments and a continuous time non-homogeneous Markov branching process. The extinction problem is considered and necessary and sufficient conditions for extinction are determined. Also discussed are limit theorems for what corresponds to the supercritical case.


Sign in / Sign up

Export Citation Format

Share Document