A Poisson limit theorem for weakly exchangeable events

1979 ◽  
Vol 16 (04) ◽  
pp. 794-802 ◽  
Author(s):  
G. K. Eagleson

Let Y 1, Y2 , · ·· be a sequence of independent, identically distributed random variables, g some symmetric 0–1 function of m variables and set Silverman and Brown (1978) have shown that under certain conditions the statistic is asymptotically distributed as a Poisson random variable. They then use this result to derive limit distributions for various statistics, useful in the analysis of spatial data. In this paper, it is shown that Silverman and Brown's theorem holds under much weaker assumptions; assumptions which involve only the symmetry of the joint distributions of the X il…i m .

1979 ◽  
Vol 16 (4) ◽  
pp. 794-802 ◽  
Author(s):  
G. K. Eagleson

Let Y1, Y2, · ·· be a sequence of independent, identically distributed random variables, g some symmetric 0–1 function of m variables and set Silverman and Brown (1978) have shown that under certain conditions the statistic is asymptotically distributed as a Poisson random variable. They then use this result to derive limit distributions for various statistics, useful in the analysis of spatial data. In this paper, it is shown that Silverman and Brown's theorem holds under much weaker assumptions; assumptions which involve only the symmetry of the joint distributions of the Xil…im.


1983 ◽  
Vol 20 (01) ◽  
pp. 47-60 ◽  
Author(s):  
M. Berman ◽  
G. K. Eagleson

Silverman and Brown (1978) have derived Poisson limit theorems for certain sequences of symmetric statistics, based on a sample of independent identically distributed random variables. In this paper an incomplete version of these statistics is considered and a Poisson limit result shown to hold. The powers of some tests based on the incomplete statistic are investigated and the main results of the paper are used to simplify the derivations of the asymptotic distributions of some statistics previously published in the literature.


1983 ◽  
Vol 15 (3) ◽  
pp. 585-600 ◽  
Author(s):  
A. D. Barbour ◽  
G. K. Eagleson

Stein's (1970) method of proving limit theorems for sums of dependent random variables is used to derive Poisson approximations for a class of statistics, constructed from finitely exchangeable random variables.Let be exchangeable random elements of a space and, for I a k-subset of , let XI be a 0–1 function. The statistics studied here are of the form where N is some collection of k -subsets of .An estimate of the total variation distance between the distributions of W and an appropriate Poisson random variable is derived and is used to give conditions sufficient for W to be asymptotically Poisson. Two applications of these results are presented.


1966 ◽  
Vol 3 (01) ◽  
pp. 272-273 ◽  
Author(s):  
H. Robbins ◽  
E. Samuel

We define a natural extension of the concept of expectation of a random variable y as follows: M(y) = a if there exists a constant − ∞ ≦ a ≦ ∞ such that if y 1, y 2, … is a sequence of independent identically distributed (i.i.d.) random variables with the common distribution of y then


1983 ◽  
Vol 15 (03) ◽  
pp. 585-600 ◽  
Author(s):  
A. D. Barbour ◽  
G. K. Eagleson

Stein's (1970) method of proving limit theorems for sums of dependent random variables is used to derive Poisson approximations for a class of statistics, constructed from finitely exchangeable random variables. Let be exchangeable random elements of a space and, for I a k-subset of , let XI be a 0–1 function. The statistics studied here are of the form where N is some collection of k -subsets of . An estimate of the total variation distance between the distributions of W and an appropriate Poisson random variable is derived and is used to give conditions sufficient for W to be asymptotically Poisson. Two applications of these results are presented.


1966 ◽  
Vol 3 (1) ◽  
pp. 272-273 ◽  
Author(s):  
H. Robbins ◽  
E. Samuel

We define a natural extension of the concept of expectation of a random variable y as follows: M(y) = a if there exists a constant − ∞ ≦ a ≦ ∞ such that if y1, y2, … is a sequence of independent identically distributed (i.i.d.) random variables with the common distribution of y then


Author(s):  
D. J. H. Garling

1. Introduction. Révész(8) has shown that if (fn) is a sequence of random variables, bounded in L2, there exists a subsequence (fnk) and a random variable f in L2 such that converges almost surely whenever . Komlós(5) has shown that if (fn) is a sequence of random variables, bounded in L1, then there is a subsequence (A*) with the property that the Cesàro averages of any subsequence converge almost surely. Subsequently Chatterji(2) showed that if (fn) is bounded in LP (where 0 < p ≤ 2) then there is a subsequence (gk) = (fnk) and f in Lp such thatalmost surely for every sub-subsequence. All of these results are examples of subsequence principles: a sequence of random variables, satisfying an appropriate moment condition, has a subsequence which satisfies some property enjoyed by sequences of independent identically distributed random variables. Recently Aldous(1), using tightness arguments, has shown that for a general class of properties such a subsequence principle holds: in particular, the results listed above are all special cases of Aldous' principal result.


1983 ◽  
Vol 20 (1) ◽  
pp. 47-60 ◽  
Author(s):  
M. Berman ◽  
G. K. Eagleson

Silverman and Brown (1978) have derived Poisson limit theorems for certain sequences of symmetric statistics, based on a sample of independent identically distributed random variables. In this paper an incomplete version of these statistics is considered and a Poisson limit result shown to hold. The powers of some tests based on the incomplete statistic are investigated and the main results of the paper are used to simplify the derivations of the asymptotic distributions of some statistics previously published in the literature.


2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


Sign in / Sign up

Export Citation Format

Share Document