On Monte Carlo algebra

1970 ◽  
Vol 7 (02) ◽  
pp. 373-387 ◽  
Author(s):  
Richard Gordon

A Monte Carlo method is proposed and demonstrated for obtaining an approximate algebraic solution to linear equations with algebraic coefficients arising from first order master equations at steady state. Exact solutions are hypothetically obtainable from the spanning trees of an associated graph, each tree contributing an algebraic term. The number of trees can be enormous. However, because of a high degeneracy, many trees yield the same algebraic term. Thus an approximate algebraic solution may be obtained by taking a Monte Carlo sampling of the trees, which yields an estimate of the frequency of each algebraic term. The accuracy of such solutions is discussed and algorithms are given for picking spanning trees of a graph with uniform probability. The argument is developed in terms of a lattice model for membrane transport, but should be generally applicable to problems in unimolecular kinetics and network analysis. The solution of partition functions and multivariable problems by analogous methods is discussed.

1970 ◽  
Vol 7 (2) ◽  
pp. 373-387 ◽  
Author(s):  
Richard Gordon

A Monte Carlo method is proposed and demonstrated for obtaining an approximate algebraic solution to linear equations with algebraic coefficients arising from first order master equations at steady state. Exact solutions are hypothetically obtainable from the spanning trees of an associated graph, each tree contributing an algebraic term. The number of trees can be enormous. However, because of a high degeneracy, many trees yield the same algebraic term. Thus an approximate algebraic solution may be obtained by taking a Monte Carlo sampling of the trees, which yields an estimate of the frequency of each algebraic term. The accuracy of such solutions is discussed and algorithms are given for picking spanning trees of a graph with uniform probability. The argument is developed in terms of a lattice model for membrane transport, but should be generally applicable to problems in unimolecular kinetics and network analysis. The solution of partition functions and multivariable problems by analogous methods is discussed.


2012 ◽  
Vol 26 (23) ◽  
pp. 1250129
Author(s):  
M. SOLAIMANI ◽  
M. IZADIFARD ◽  
H. ARABSHAHI ◽  
R. SARKARDEI

In this work, we have studied some computational aspects of a Monte Carlo method applied to an exciton which is confined in an AlGaAs/GaAs single quantum well. The computational pseudo-code and effect of its computational parameters like number of the Monte Carlo sampling points on a physical quantity like exciton binding energy are investigated. Then the CPU time under the change of such computational parameters are calculated. Finally, the exciton binding energy and errors of different methods of approximating the effective two dimensional coulomb potential for these systems are compared.


Sign in / Sign up

Export Citation Format

Share Document