High-Level exceedances of regenerative and semi-stationary processes

1980 ◽  
Vol 17 (02) ◽  
pp. 423-431 ◽  
Author(s):  
Richard Serfozo

The cumulative amount of time that a regenerative or semi-stationary process exceeds a high level and other measures of these exceedances are considered as special cases of a non-decreasing stochastic process of partial sums. We present necessary and sufficient conditions for these exceedance processes to converge in distribution to Poisson processes or processes with stationary independent non-negative increments as the level goes to infinity. We apply our results to random walks, M/M/s queues, and thinnings of point processes.

1980 ◽  
Vol 17 (2) ◽  
pp. 423-431 ◽  
Author(s):  
Richard Serfozo

The cumulative amount of time that a regenerative or semi-stationary process exceeds a high level and other measures of these exceedances are considered as special cases of a non-decreasing stochastic process of partial sums. We present necessary and sufficient conditions for these exceedance processes to converge in distribution to Poisson processes or processes with stationary independent non-negative increments as the level goes to infinity. We apply our results to random walks, M/M/s queues, and thinnings of point processes.


1972 ◽  
Vol 4 (01) ◽  
pp. 151-176 ◽  
Author(s):  
R. K. Milne ◽  
M. Westcott

Newman (1970) introduced an interesting new class of point processes which he called Gauss-Poisson. They are characterized, in the most general case, by two measures. We determine necessary and sufficient conditions on these measures for the resulting point process to be well defined, and proceed to a systematic study of its properties. These include stationarity, ergodicity, and infinite divisibility. We mention connections with other classes of point processes and some statistical results. Our basic approach is through the probability generating functional of the process.


1993 ◽  
Vol 30 (04) ◽  
pp. 877-888 ◽  
Author(s):  
J. Hüsler

Exceedances of a non-stationary sequence above a boundary define certain point processes, which converge in distribution under mild mixing conditions to Poisson processes. We investigate necessary and sufficient conditions for the convergence of the point process of exceedances, the point process of upcrossings and the point process of clusters of exceedances. Smooth regularity conditions, as smooth oscillation of the non-stationary sequence, imply that these point processes converge to the same Poisson process. Since exceedances are asymptotically rare, the results are extended to triangular arrays of rare events.


2001 ◽  
Vol 17 (4) ◽  
pp. 671-685 ◽  
Author(s):  
Hannes Leeb ◽  
Benedikt M. Pötscher

For a process with stationary first differences a necessary and sufficient condition for the variance of the process to be unbounded is given. An example shows that the variance of an integrated process—although unbounded—need not diverge to infinity. Sufficient conditions for the variance of an integrated process to diverge to infinity are provided.


1972 ◽  
Vol 4 (1) ◽  
pp. 151-176 ◽  
Author(s):  
R. K. Milne ◽  
M. Westcott

Newman (1970) introduced an interesting new class of point processes which he called Gauss-Poisson. They are characterized, in the most general case, by two measures. We determine necessary and sufficient conditions on these measures for the resulting point process to be well defined, and proceed to a systematic study of its properties. These include stationarity, ergodicity, and infinite divisibility. We mention connections with other classes of point processes and some statistical results. Our basic approach is through the probability generating functional of the process.


1993 ◽  
Vol 30 (4) ◽  
pp. 877-888 ◽  
Author(s):  
J. Hüsler

Exceedances of a non-stationary sequence above a boundary define certain point processes, which converge in distribution under mild mixing conditions to Poisson processes. We investigate necessary and sufficient conditions for the convergence of the point process of exceedances, the point process of upcrossings and the point process of clusters of exceedances. Smooth regularity conditions, as smooth oscillation of the non-stationary sequence, imply that these point processes converge to the same Poisson process. Since exceedances are asymptotically rare, the results are extended to triangular arrays of rare events.


1976 ◽  
Vol 13 (03) ◽  
pp. 519-529 ◽  
Author(s):  
Douglas R. Miller

Necessary and sufficient conditions are presented under which the point processes equivalent to order statistics of n i.i.d. random variables or superpositions of n i.i.d. renewal processes converge to a non-degenerate limiting process as n approaches infinity. The limiting process must be one of three types of non-homogeneous Poisson process, one of which is the Weibull process. These point processes occur as failure-time models in the reliability theory of repairable systems.


Author(s):  
E. N. Dzhafarov ◽  
Ru Zhang ◽  
Janne Kujala

Most behavioural and social experiments aimed at revealing contextuality are confined to cyclic systems with binary outcomes. In quantum physics, this broad class of systems includes as special cases Klyachko–Can–Binicioglu–Shumovsky-type, Einstein–Podolsky–Rosen–Bell-type and Suppes–Zanotti–Leggett–Garg-type systems. The theory of contextuality known as contextuality-by-default allows one to define and measure contextuality in all such systems, even if there are context-dependent errors in measurements, or if something in the contexts directly interacts with the measurements. This makes the theory especially suitable for behavioural and social systems, where direct interactions of ‘everything with everything’ are ubiquitous. For cyclic systems with binary outcomes, the theory provides necessary and sufficient conditions for non-contextuality, and these conditions are known to be breached in certain quantum systems. We review several behavioural and social datasets (from polls of public opinion to visual illusions to conjoint choices to word combinations to psychophysical matching), and none of these data provides any evidence for contextuality. Our working hypothesis is that this may be a broadly applicable rule: behavioural and social systems are non-contextual, i.e. all ‘contextual effects’ in them result from the ubiquitous dependence of response distributions on the elements of contexts other than the ones to which the response is presumably or normatively directed.


1990 ◽  
Vol 27 (4) ◽  
pp. 792-804 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Ronald W. Wolff

We consider the equivalence of state probabilities of a general stationary process at an arbitrary time and at embedded epochs of a given point process, which is called ASTA (Arrivals See Time Averages). By using an event-conditonal intensity, we give necessary and sufficient conditions for ASTA for a large class of state sets, which determines a state distribution. We do not need any additional assumptions except that the general process has left-hand limits at all points of time. Especially, for a stationary pure-jump process with a point process, ASTA is obtained for all state sets. As an application of those results, Anti-PASTA is obtained for a pure-jump Markov process and a certain class of GSMP (Generalized Semi-Markov Processes), where Anti-PASTA means that ASTA implies that the arrival process is Poisson.


Sign in / Sign up

Export Citation Format

Share Document