scholarly journals Improving the Asmussen–Kroese-Type Simulation Estimators

2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].

2012 ◽  
Vol 49 (04) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(S n > u) and P(S N > u) are known to work well in rare event settings, where S N is the sum of independent, identically distributed heavy-tailed random variables X 1,…,X N and N is a nonnegative, integer-valued random variable independent of the X i . In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the X i are nonnegative. We also apply our ideas to estimate the quantity E[(S N -u)+].


2006 ◽  
Vol 38 (2) ◽  
pp. 545-558 ◽  
Author(s):  
Søren Asmussen ◽  
Dirk P. Kroese

The estimation of P(Sn>u) by simulation, where Sn is the sum of independent, identically distributed random varibles Y1,…,Yn, is of importance in many applications. We propose two simulation estimators based upon the identity P(Sn>u)=nP(Sn>u, Mn=Yn), where Mn=max(Y1,…,Yn). One estimator uses importance sampling (for Yn only), and the other uses conditional Monte Carlo conditioning upon Y1,…,Yn−1. Properties of the relative error of the estimators are derived and a numerical study given in terms of the M/G/1 queue in which n is replaced by an independent geometric random variable N. The conclusion is that the new estimators compare extremely favorably with previous ones. In particular, the conditional Monte Carlo estimator is the first heavy-tailed example of an estimator with bounded relative error. Further improvements are obtained in the random-N case, by incorporating control variates and stratification techniques into the new estimation procedures.


2006 ◽  
Vol 38 (02) ◽  
pp. 545-558 ◽  
Author(s):  
Søren Asmussen ◽  
Dirk P. Kroese

The estimation of P(S n >u) by simulation, where S n is the sum of independent, identically distributed random varibles Y 1 ,…,Y n , is of importance in many applications. We propose two simulation estimators based upon the identity P(S n >u)=nP(S n >u, M n =Y n ), where M n =max(Y 1 ,…,Y n ). One estimator uses importance sampling (for Y n only), and the other uses conditional Monte Carlo conditioning upon Y 1 ,…,Y n−1. Properties of the relative error of the estimators are derived and a numerical study given in terms of the M/G/1 queue in which n is replaced by an independent geometric random variable N. The conclusion is that the new estimators compare extremely favorably with previous ones. In particular, the conditional Monte Carlo estimator is the first heavy-tailed example of an estimator with bounded relative error. Further improvements are obtained in the random-N case, by incorporating control variates and stratification techniques into the new estimation procedures.


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2017 ◽  
Vol 12 (2) ◽  
pp. 412-432 ◽  
Author(s):  
Leonardo Rojas-Nandayapa ◽  
Wangyue Xie

AbstractWe consider phase-type scale mixture distributions which correspond to distributions of a product of two independent random variables: a phase-type random variable Y and a non-negative but otherwise arbitrary random variable S called the scaling random variable. We investigate conditions for such a class of distributions to be either light- or heavy-tailed, we explore subexponentiality and determine their maximum domains of attraction. Particular focus is given to phase-type scale mixture distributions where the scaling random variable S has discrete support – such a class of distributions has been recently used in risk applications to approximate heavy-tailed distributions. Our results are complemented with several examples.


1996 ◽  
Vol 28 (2) ◽  
pp. 463-480 ◽  
Author(s):  
Charles M. Goldie ◽  
Rudolf Grübel

We investigate the behaviour of P(R ≧ r) and P(R ≦ −r) as r → ∞for the random variable where is an independent, identically distributed sequence with P(− 1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.


2010 ◽  
Vol 51 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In this paper, we present the rate of convergence of normal approximation and the theorem on large deviations for a compound process Zt = \sumNt i=1 t aiXi, where Z0 = 0 and ai > 0, of weighted independent identically distributed random variables Xi, i = 1, 2, . . . with  mean EXi = µ and variance DXi = σ2 > 0. It is assumed that Nt is a non-negative integervalued random variable, which depends on t > 0 and is independent of Xi, i = 1, 2, . . . .


1966 ◽  
Vol 3 (01) ◽  
pp. 272-273 ◽  
Author(s):  
H. Robbins ◽  
E. Samuel

We define a natural extension of the concept of expectation of a random variable y as follows: M(y) = a if there exists a constant − ∞ ≦ a ≦ ∞ such that if y 1, y 2, … is a sequence of independent identically distributed (i.i.d.) random variables with the common distribution of y then


1980 ◽  
Vol 17 (02) ◽  
pp. 570-573 ◽  
Author(s):  
Barry C. Arnold

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, Xn :n. If the Xi 's have a geometric distribution then the conditional distribution of Xk +1:n – Xk :n given Xk+ 1:n – Xk :n > 0 is the same as the distribution of X 1:n–k . Also the random variable X 2:n – X 1:n is independent of the event [X 1:n = 1]. Under mild conditions each of these two properties characterizes the geometric distribution.


1983 ◽  
Vol 20 (01) ◽  
pp. 209-212 ◽  
Author(s):  
M. Sreehari

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, X n:n . We prove that if the random variable X2:n – X 1:n is independent of the events [X1:n = m] and [X1:n = k], for fixed k > m > 1, then the Xi 's are geometric. This is related to a characterization problem raised by Arnold (1980).


Sign in / Sign up

Export Citation Format

Share Document