554. Titration curves of whey constituents

1954 ◽  
Vol 21 (2) ◽  
pp. 229-237 ◽  
Author(s):  
M. Boulet ◽  
Dyson Rose

Titration curves of calcium-containing and calcium-free solutions resembling milk serum indicated that precipitation of calcium from such solutions was greatly impeded by citrate. In the absence of citrate, precipitation of tricalcium phosphate was complete at pH 6·0, but, in solutions containing citrate, precipitation of tricalcium phosphate occurred gradually throughout the titration and was not complete at pH 10.In some solutions precipitation of calcium phosphate ceased at about pH 9·7, even though the base added had been insufficient to neutralize tertiary hydrogen equivalent to the known calcium content. Precipitation of dicalcium phosphate must therefore have occurred.The observed stability of calcium in these solutions was much greater than that predicted from the accepted solubility and dissociation constants. It is therefore concluded that detailed studies of these constants, and of the factors controlling precipitation of dior tricalcium phosphate, are needed.

2019 ◽  
Vol 829 ◽  
pp. 23-27 ◽  
Author(s):  
Haifaa' Auni Mohammad Zaki ◽  
Khairul Anuar Shariff ◽  
Mohamad Hafizi Abu Bakar ◽  
Mohamad Nurul Azmi

Porous β-tricalcium phosphate (β-TCP) foam granular cements was obtained by exposing different range size of β-TCP foam granular (300-600 μm and 600-1000 μm) with 1.4 mol/L of saturated acidic calcium phosphate solution at various setting reaction times. It was found that large amount of dicalcium phosphate dihydrate (DCPD) was formed in the set specimens after exposing small size of β-TCP foam granular with saturated acidic calcium phosphate solution. Morphological observation shows that the bridging of DCPD platelet-like crystals between β-TCP foam granular surfaces were detected as early as 10 mins after exposing 300-600 μm of β-TCP foam granules with saturated acidic calcium phosphate solution. In fact, the amount of DCPD formed in the specimens obtained from small size of β-TCP foam granules is higher than large sized foam granules. These results demonstrated that small size of β-TCP foam granules induced fast setting reaction of β-TCP foam granules to produce porous β-TCP foam granular cements.


1976 ◽  
Vol 55 (4) ◽  
pp. 617-624 ◽  
Author(s):  
G.H. Nancollas ◽  
J.S. Wefel

The growth of calcium phosphates on seed materials, dicalcium PhosPhate dihydrate (DCPD), tricalcium phosphate (TCP), octacalcium phosphate (OCP), and hydroxyapatite (HAP) in stable supersaturated solutions has been studied under conditions of pH and concentration for which the predominant phases are 1, DCPD, and II, HAP. All seed crystals are good nucleators for DCPD in system I, but, aside from HAP itself, only OCP will readily induce growth under condition II.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lijia Cheng ◽  
Tianchang Lin ◽  
Ahmad Taha Khalaf ◽  
Yamei Zhang ◽  
Hongyan He ◽  
...  

AbstractNowadays, artificial bone materials have been widely applied in the filling of non-weight bearing bone defects, but scarcely ever in weight-bearing bone defects. This study aims to develop an artificial bone with excellent mechanical properties and good osteogenic capability. Firstly, the collagen-thermosensitive hydrogel-calcium phosphate (CTC) composites were prepared as follows: dissolving thermosensitive hydrogel at 4 °C, then mixing with type I collagen as well as tricalcium phosphate (CaP) powder, and moulding the composites at 37 °C. Next, the CTC composites were subjected to evaluate for their chemical composition, micro morphology, pore size, Shore durometer, porosity and water absorption ability. Following this, the CTC composites were implanted into the muscle of mice while the 70% hydroxyapatite/30% β-tricalcium phosphate (HA/TCP) biomaterials were set as the control group; 8 weeks later, the osteoinductive abilities of biomaterials were detected by histological staining. Finally, the CTC and HA/TCP biomaterials were used to fill the large segments of tibia defects in mice. The bone repairing and load-bearing abilities of materials were evaluated by histological staining, X-ray and micro-CT at week 8. Both the CTC and HA/TCP biomaterials could induce ectopic bone formation in mice; however, the CTC composites tended to produce larger areas of bone and bone marrow tissues than HA/TCP. Simultaneously, bone-repairing experiments showed that HA/TCP biomaterials were easily crushed or pushed out by new bone growth as the material has a poor hardness. In comparison, the CTC composites could be replaced gradually by newly formed bone and repair larger segments of bone defects. The CTC composites trialled in this study have better mechanical properties, osteoinductivity and weight-bearing capacity than HA/TCP. The CTC composites provide an experimental foundation for the synthesis of artificial bone and a new option for orthopedic patients.


Sign in / Sign up

Export Citation Format

Share Document