Quantities which define conically self-similar free-vortex solutions to the Navier–Stokes equations uniquely

2001 ◽  
Vol 438 ◽  
pp. 159-181 ◽  
Author(s):  
CARL FREDRIK STEIN

It is proved that if, in addition to the opening angle of the bounding conical streamsurface and the circulation thereon, one of the radial velocity, the radial tangential stress or the pressure on the bounding streamsurface is given, then a conically self-similar free-vortex solution is uniquely determined in the entire conical domain. In addition, it is shown that for ows inside a cone the same conclusion holds for the Yih et al. (1982) parameter T, but for exterior flows it is shown numerically that non-uniqueness may occur. For given values of the opening angle of the bounding conical streamsurface and the circulation thereon the asymptotic analysis of Shtern & Hussain (1996) is applied to obtain asymptotic formulae which interrelate the opening angle of the cone along which the jet fans out and the radial tangential stress on the bounding surface. A striking property of these formulae is that the opening angle of the cone along which the jet fans out is independent of the value of the viscosity as long as it is small enough for the first-order asymptotic expressions to apply. However, these formulae are shown to be inaccurate for moderate values of the ratio of the circulation at the bounding surface and the viscosity. To amend this shortcoming, an alternative, more accurate, asymptotic analysis is developed to derive second-order correction terms, which considerably improve the accuracy.

2012 ◽  
Vol 14 (05) ◽  
pp. 1250031
Author(s):  
GUY BERNARD

A global existence result is presented for the Navier–Stokes equations filling out all of three-dimensional Euclidean space ℝ3. The initial velocity is required to have a bell-like form. The method of proof is based on symmetry transformations of the Navier–Stokes equations and a specific upper solution to the heat equation in ℝ3× [0, 1]. This upper solution has a self-similar-like form and models the diffusion process of the heat equation. By a symmetry transformation, the problem is transformed into an equivalent one having a very small initial velocity. Using the upper solution, the equivalent problem is then solved in the time interval [0, 1]. This local solution is then extended to the time interval [0, ∞) by an iterative process. At each step, the problem is extended further in time in an interval of time whose length is greater than one, thus producing the global solution. Each extension is transformed, by an appropriate change of variables, into the first local problem in the time interval [0, 1]. These transformations exploit the diffusive and self-similar-like nature of the upper solution.


1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.


2010 ◽  
Vol 20 (08) ◽  
pp. 1299-1318 ◽  
Author(s):  
A. BELLOUQUID

This paper deals with the analysis of the asymptotic limit for BGK model to the linearized Navier–Stokes equations when the Knudsen number ε tends to zero. The uniform (in ε) existence of global strong solutions and uniqueness theorems are proved for regular initial fluctuations. As ε tends to zero, the solution of BGK model converges strongly to the solution of the linearized Navier–Stokes systems. The validity of the BGK model is critically analyzed.


Sign in / Sign up

Export Citation Format

Share Document