Natural convection flow far from a horizontal plate

1999 ◽  
Vol 387 ◽  
pp. 227-254 ◽  
Author(s):  
VALOD NOSHADI ◽  
WILHELM SCHNEIDER

Plane and axisymmetric (radial), horizontal laminar jet flows, produced by natural convection on a horizontal finite plate acting as a heat dipole, are considered at large distances from the plate. It is shown that physically acceptable self-similar solutions of the boundary-layer equations, which include buoyancy effects, exist in certain Prandtl-number regimes, i.e. 0.5<Pr[les ]1.470588 for plane, and Pr>1 for axisymmetric flow. In the plane flow case, the eigenvalues of the self-similar solutions are independent of the Prandtl number and can be determined from a momentum balance, whereas in the axisymmetric case the eigenvalues depend on the Prandtl number and are to be determined as part of the solution of the eigenvalue problem. For Prandtl numbers equal to, or smaller than, the lower limiting values of 0.5 and 1 for plane and axisymmetric flow, respectively, the far flow field is a non-buoyant jet, for which self-similar solutions of the boundary-layer equations are also provided. Furthermore it is shown that self-similar solutions of the full Navier–Stokes equations for axisymmetric flow, with the velocity varying as 1/r, exist for arbitrary values of the Prandtl number.Comparisons with finite-element solutions of the full Navier–Stokes equations show that the self-similar boundary-layer solutions are asymptotically approached as the plate Grashof number tends to infinity, whereas the self-similar solution to the full Navier–Stokes equations is applicable, for a given value of the Prandtl number, only to one particular, finite value of the Grashof number.In the Appendices second-order boundary-layer solutions are given, and uniformly valid composite expansions are constructed; asymptotic expansions for large values of the lateral coordinate are performed to study the decay of the self-similar boundary-layer flows; and the stability of the jets is investigated using transient numerical solutions of the Navier–Stokes equations.

2019 ◽  
Vol 29 (12) ◽  
pp. 2271-2320
Author(s):  
Xin Liu ◽  
Yuan Yuan

In this work, we establish a class of globally defined large solutions to the free boundary problem of compressible full Navier–Stokes equations with constant shear viscosity, vanishing bulk viscosity and heat conductivity. We establish such solutions with initial data perturbed around the self-similar solutions when [Formula: see text]. In the case when [Formula: see text], solutions with bounded entropy can be constructed. It should be pointed out that the solutions we obtain in this fashion do not in general keep being a small perturbation of the self-similar solution due to the second law of thermodynamics, i.e. the growth of entropy. If, in addition, in the case when [Formula: see text], we can construct a solution as a global-in-time small perturbation of the self-similar solution and the entropy is uniformly bounded in time. Our result extends the one of Hadžić and Jang [Expanding large global solutions of the equations of compressible fluid mechanics, J. Invent. Math. 214 (2018) 1205.] from the isentropic inviscid case to the non-isentropic viscous case.


2019 ◽  
Vol 352 ◽  
pp. 981-1043 ◽  
Author(s):  
Baishun Lai ◽  
Changxing Miao ◽  
Xiaoxin Zheng

1992 ◽  
Vol 238 ◽  
pp. 487-507 ◽  
Author(s):  
Ernst W. Mayer ◽  
Kenneth G. Powell

Results are presented for a class of self-similar solutions of the steady, axisymmetric Navier–Stokes equations, representing the flows in slender (quasi-cylindrical) vortices. Effects of vortex strength, axial gradients and compressibility are studied. The presence of viscosity is shown to couple the parameters describing the core growth rate and the external flow field, and numerical solutions show that the presence of an axial pressure gradient has a strong effect on the axial flow in the core. For the viscous compressible vortex, near-zero densities and pressures and low temperatures are seen on the vortex axis as the strength of the vortex increases. Compressibility is also shown to have a significant influence upon the distribution of vorticity in the vortex core.


According to Stewartson (1969, 1974) and to Messiter (1970), the flow near the trailing edge of a flat plate has a limit structure for Reynolds number Re →∞ consisting of three layers over a distance O (Re -3/8 ) from the trailing edge: the inner layer of thickness O ( Re -5/8 ) in which the usual boundary layer equations apply; an intermediate layer of thickness O ( Re -1/2 ) in which simplified inviscid equations hold, and the outer layer of thickness O ( Re -3/8 ) in which the full inviscid equations hold. These asymptotic equations have been solved numerically by means of a Cauchy-integral algorithm for the outer layer and a modified Crank-Nicholson boundary layer program for the displacement-thickness interaction between the layers. Results of the computation compare well with experimental data of Janour and with numerical solutions of the Navier-Stokes equations by Dennis & Chang (1969) and Dennis & Dunwoody (1966).


Sign in / Sign up

Export Citation Format

Share Document