Response of supersonic turbulent boundary layers to local and global mechanical distortions

2009 ◽  
Vol 630 ◽  
pp. 225-265 ◽  
Author(s):  
ISAAC W. EKOTO ◽  
RODNEY D. W. BOWERSOX ◽  
THOMAS BEUTNER ◽  
LARRY GOSS

The response of the mean and turbulent flow structure of a supersonic high-Reynolds-number turbulent boundary layer flow subjected to local and global mechanical distortions was experimentally examined. Local disturbances were introduced via small-scale wall patterns, and global distortions were induced through streamline curvature-driven pressure gradients. Local surface topologies included k-type diamond and d-type square elements; a smooth wall was examined for comparison purposes. Three global distortions were studied with each of the three surface topologies. Measurements included planar contours of the mean and fluctuating velocity via particle image velocimetry, Pitot pressure profiles, pressure sensitive paint and Schlieren photography. The velocity data were acquired with sufficient resolution to characterize the mean and turbulent flow structure and to examine interactions between the local surface roughness distortions and the imposed pressure gradients on the turbulence production. A strong response to both the local and global distortions was observed with the diamond elements, where the effect of the elements extended into the outer regions of the boundary layer. It was shown that the primary cause for the observed response was the result of local shock and expansion waves modifying the turbulence structure and production. By contrast, the square elements showed a less pronounced response to local flow distortions as the waves were significantly weaker. However, the frictional losses were higher for the blunter square roughness elements. Detailed quantitative characterizations of the turbulence flow structure and the associated production mechanisms are described herein. These experiments demonstrate fundamental differences between supersonic and subsonic rough-wall flows, and the new understanding of the underlying mechanisms provides a scientific basis to systematically modify the mean and turbulence flow structure all the way across supersonic boundary layers.

1996 ◽  
Vol 118 (4) ◽  
pp. 787-794 ◽  
Author(s):  
A. C. Schwarz ◽  
M. W. Plesniak

A turbulent boundary layer subjected to multiple, additional strain rates, namely convex curvature coupled with streamwise pressure gradients (zero and favorable, ZPG and FPG) was investigated experimentally using laser Doppler velocimetry. The inapplicability of the universal flat-plate log-law to curved flows is discussed. However, a logarithmic region is found in the curved and accelerated turbulent boundary layer examined here. Similarity of the mean velocity and Reynolds stress profiles was achieved by 45 deg of curvature even in the presence of the strongest FPG investigated (k = 1.01 × 10−6). The Reynolds stresses were suppressed (with respect to flat plate values) due primarily to the effects of strong convex curvature (δo/R ≈ 0.10). In curved boundary layers subjected to different favorable pressure gradients, the mean velocity and normal Reynolds stress profiles collapsed in the inner region, but deviated in the outer region (y+ ≥ 100). Thus, inner scaling accounted for the impact of the extra strain rates on these profiles in the near-wall region. Combined with curvature, the FPG reduced the strength of the wake component, resulted in a greater suppression of the fluctuating velocity components and a reduction of the primary Reynolds shear stress throughout almost the entire boundary layer relative to the ZPG curved case.


AIAA Journal ◽  
2002 ◽  
Vol 40 (5) ◽  
pp. 832-841 ◽  
Author(s):  
Robert M. Latin ◽  
Rodney D. W. Bowersox

2000 ◽  
Vol 16 (1) ◽  
pp. 153-154 ◽  
Author(s):  
R. D. W. Bowersox ◽  
R. C. Wier ◽  
D. D. Glawe ◽  
S. Gogineni

2009 ◽  
Vol 639 ◽  
pp. 101-131 ◽  
Author(s):  
JOUNG-HO LEE ◽  
HYUNG JIN SUNG

The effects of adverse pressure gradients on turbulent structures were investigated by carrying out direct numerical simulations of turbulent boundary layers subjected to adverse and zero pressure gradients. The equilibrium adverse pressure gradient flows were established by using a power law free-stream distribution U∞ ~ xm. Two-point correlations of velocity fluctuations were used to show that the spanwise spacing between near-wall streaks is affected significantly by a strong adverse pressure gradient. Low-momentum regions are dominant in the middle of the boundary layer as well as in the log layer. Linear stochastic estimation was used to provide evidence for the presence of low-momentum regions and to determine their statistical properties. The mean width of such large-scale structures is closely associated with the size of the hairpin-like vortices in the outer layer. The conditionally averaged flow fields around events producing Reynolds stress show that hairpin-like vortices are the structures associated with the production of outer turbulence. The shapes of the vortices beyond the log layer were found to be similar when their length scales were normalized according to the boundary layer thickness. Estimates of the conditionally averaged velocity fields associated with the spanwise vortical motion were obtained by using linear stochastic estimation. These results confirm that the outer region of the adverse pressure gradient boundary layer is populated with streamwise-aligned vortex organizations, which are similar to those of the vortex packet model proposed by Adrian, Meinhart & Tomkins (J. Fluid Mech., vol. 422, 2000, pp. 1–54). The adverse pressure gradient augments the inclination angles of the packets and the mean streamwise spacing of the vortex heads in the packets.


1992 ◽  
Vol 238 ◽  
pp. 699-722 ◽  
Author(s):  
P. A. Durbin ◽  
S. E. Belcher

An asymptotic analysis is developed for turbulent boundary layers in strong adverse pressure gradients. It is found that the boundary layer divides into three distinguishable regions: these are the wall layer, the wake layer and a transition layer. This structure has two key differences from the zero-pressure-gradient boundary layer: the wall layer is not exponentially thinner than the wake; and the wake has a large velocity deficit, and cannot be linearized. The mean velocity profile has a y½ behaviour in the overlap layer between the wall and transition regions.The analysis is done in the context of eddy viscosity closure modelling. It is found that k-ε-type models are suitable to the wall region, and have a power-law solution in the y½ layer. The outer-region scaling precludes the usual ε-equation. The Clauser, constant-viscosity model is used in that region. An asymptotic expansion of the mean flow and matching between the three regions is carried out in order to determine the relation between skin friction and pressure gradient. Numerical calculations are done for self-similar flow. It is found that the surface shear stress is a double-valued function of the pressure gradient in a small range of pressure gradients.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
X. W. Wang ◽  
Y. Zhou ◽  
W. O. Wong

The turbulent flow within a cylinder‐on‐cone cyclone is highly three‐dimensional and our knowledge of this flow has yet to be improved. This work aims to improve our understanding of the flow structure, with special attention to the swirl number effect. The three velocity components of the flow were measured using LDA and PIV. The Reynolds number, based on the inlet velocity and the cyclone cylindrical chamber diameter, was 7.4 × 104, and the swirl number examined was from 2.4 to 5.3. Three regions of the flow have been identified after careful analysis of the data, which are referred to as the core, the outer and the wall‐affected regions, respectively; each is distinct from another in terms of the vorticity concentration, frequency of quasi‐periodical coherent structure, the probability density function, and mean and variance of velocities. It has been found that the flow, including its Strouhal numbers and radial distributions of the mean and fluctuating velocities, depends considerably on the swirl number.


Sign in / Sign up

Export Citation Format

Share Document