swirl number
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 48)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
pp. 1-33
Author(s):  
Tommaso Lenzi ◽  
Alessio Picchi ◽  
Antonio Andreini ◽  
Bruno Facchini

Abstract The analysis of the interaction between the swirling and liner film-cooling flows is a fundamental task for the design of turbine combustion chambers since it influences different aspects such as emissions and cooling capability. Particularly, high turbulence values, flow instabilities, and tangential velocity components induced by the swirlers deeply affect the behavior of effusion cooling jets, demanding for dedicated time-resolved near-wall analysis. The experimental setup of this work consists of a non-reactive single-sector linear combustor test rig scaled up with respect to engine dimensions; the test section was equipped with an effusion plate with standard inclined cylindrical holes to simulate the liner cooling system. The rig was instrumented with a 2D Time-Resolved Particle Image Velocimetry system, focused on different field of views. The degree of swirl is usually characterized by the swirl number, Sn, defined as the ratio of the tangential momentum to axial momentum flux. To assess the impact of such parameter on the near-wall effusion behavior, a set of three axial swirlers with swirl number equal to Sn = 0.6 − 0.8 − 1.0 were designed and tested in the experimental apparatus. An analysis of the main flow by varying the Sn was first performed in terms of average velocity, RMS, and Tu values, providing kinetic energy spectra and turbulence length scale information. Following, the analysis was focused on the near-wall regions: the effects of Sn on the coolant jets was quantified in terms of vorticity analysis and jet oscillation.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012019
Author(s):  
S G Skripkin

Abstract The current work studies a swirling laminar viscous pipe flow with a controllable swirl number and varying pipe divergence cone angle. Such flows are widely used in various engineering applications. When a certain level of flow swirl is reached, a phenomenon called vortex breakdown occurs, the characteristics of which depend on the intensity of swirling of the flow and the Reynolds number. However, in addition to these two parameters, an important influence is exerted by the pipe opening angle, which often does not allow generalizing the results obtained in the pipe flow with even slightly different angles. Since experimentally it is quite difficult and expensive to change the pipe angle, especially considering the water as working fluid, this issue could be solved using CFD techniques. Using the design study, 63 different combinations of S and α are considered. The effect of the pipe divergence angle on the position of the bubble vortex breakdown and its properties is demonstrated. It is shown that there is a nonlinear relationship between the position of the bubble breakdown onset and the minimum value of the axial velocity at the axis depending on the opening angle of the cone.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012160
Author(s):  
D A Suslov ◽  
I V Litvinov ◽  
E U Gorelikov ◽  
S I Shtork

Abstract The paper presents the data of a detailed study of the flow characteristics behind the runner of an air model of a propeller-type micro hydro turbine with varying operating modes from partial load to severe overload. Detailed measurements of the flow field distributions were carried out using an automated system for contactless optical diagnostics (LDA). The obtained data made it possible to link the identified features of the development of the flow structure when changing the operating mode of the installation with the nature of the evolution of the integral swirl number that determines the state of the swirled flow. Eventually, the work results can be used in the elaboration of recommendations for extending the regulation range of the operating regimes of hydraulic microturbines and providing their high efficiency.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012106
Author(s):  
I V Litvinov ◽  
E U Gorelikov ◽  
S I Shtork

Abstract The experimental study of an isothermal swirl flow with the formation of a precessing vortex core in the radial swirler upon non-confinement and confinement conditions is carried out. Velocity profiles are obtained with varying Re and guide vane angle, changing the swirl number S. Four acoustic sensors and LDA system are used to measure Strouhal number as the function of the integral swirl number in the range from 0.5 <S <0.8. It is shown that the unsteady flow with PVC effect significantly changes upon non-confinement and confinement conditions.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012002
Author(s):  
D A Suslov ◽  
S I Shtork ◽  
I V Litvinov ◽  
E U Gorelikov

Abstract The flow characteristics behind the runner of an air model of a propeller-type micro-hydroturbine were studied in detail by varying the operation conditions from part-load to high overload. The Reynolds number was varied from 3×104 to 9×104, and the swirl number from 0.7 to -0.4. An automated laser-Doppler anemometer (LDA) system for non-contact optical diagnostics was used to perform detailed measurements of the flow field distribution, including the profiles of two components of averaged velocities and pulsations and LDA signal spectra. Based on the results, a correlation was found between the identified features of the development of the flow structure under changing operating conditions of the hydroturbine and the nature of the evolution of the integral swirl number, which determines the state of the swirling flow. This can be used to develop recommendations for expanding the range of regulation of hydroturbine operation while maintaining high efficiency.


2021 ◽  
Vol 91 ◽  
pp. 108812
Author(s):  
I.V. Litvinov ◽  
D.A. Suslov ◽  
E.U. Gorelikov ◽  
S.I. Shtork

Author(s):  
Tiezheng Zhao ◽  
Xiao Liu ◽  
Zhihao Zhang ◽  
Jialong Yang ◽  
Hongtao Zheng

The three-dimensional turbulent swirling flame in an internally-staged combustor is numerically investigated. Four cases over a range of swirl intensities are explored by the Flamelet Generated Manifold model in this paper. Special attention is paid to analyzing the variation of the flow field, temperature, major species concentrations and emissions. The results clearly show the effects of swirl number on the size of the center recirculation zone, fuel distribution and combustion characteristics. When the third premixed stage swirl number increases from 0.6 to 1.2, the axial length of the center recirculation zone decreases by 3.7%, while the radial length increases by 6.9%. The characteristics of the flow field play an important role in the spatial distribution of the fuel, which further affects the temperature distribution in the combustor. The backflow effect is enhanced, resulting in a greater concentration of fuel at the outlet of the swirler. After the maximum temperature is reached at the exit position of the pilot stage, the temperature decreases compared to the peak temperature downstream as the proportion of premixed combustion mode increases. This creates a high concentration region of OH at the outlet of the pilot stage injector and the heat release region is squeezed upstream. At the same time, the volume of the high-temperature region downstream of the pilot stage is reduced. In addition, as the swirl number of the third premixed stage increases from 0.6 to 1.2, the emissions of NO and CO decrease by 28.7% and 75%, respectively.


Energetika ◽  
2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Harun Yilmaz ◽  
Omer Cam ◽  
Ilker Yilmaz

Swirling flows increase combustion performance via favouring flame stability, pollutant emissions, and combustion intensity. The strength of a swirling flow is characterized by a parameter known as swirl number, which is highly related to the dh/do ratio. In this study, effects of the swirler dh/do ratio on combustion and emission characteristics of the synthetic gas flames of premixed 20%CNG/30%H2/30%CO/20%CO2 mixture were experimentally investigated in a laboratory-scale swirl stabilized combustor. For this purpose, twelve different swirl generators were designed and manufactured. dh/do ratios of these swirlers were set as 0.30 and 0.50, and the geometric swirl number was varied between the values of 0.4 and 1.4 (at 0.2 intervals). All experiments were conducted at a fuel-lean equivalence ratio (ϕ = 0.6), room temperature, and local atmospheric conditions of the city of Kayseri, Turkey. A data logger was utilized to plot axial and radial temperatures and NOx, CO, and CO2 profiles, which were exploited to assess combustion and emission performance. Results showed that the dh/do ratio had a non-monotonic effect on the behaviour of combustion and emission of the tested synthetic gas mixture. Depending on the swirl number, increments and decrements were observed in temperature and emission values.


2021 ◽  
Author(s):  
T. Lenzi ◽  
A. Picchi ◽  
A. Andreini ◽  
B. Facchini

Abstract The analysis of the interaction between the swirling and cooling flows, promoted by the liner film cooling system, is a fundamental task for the design of turbine combustion chambers since it influences different aspects such as emissions and cooling capability. In particular high turbulence values, flow instabilities, and tangential velocity components induced by the swirling flow deeply affect the behavior of effusion cooling jets, demanding for dedicated time-resolved near-wall experimental analysis. The experimental set up of this work consists of a non-reactive single-sector linear combustor test rig scaled up with respect to engine dimensions; the test section was equipped with an effusion plate with standard inclined cylindrical holes to simulate the liner cooling system. The rig was instrumented with a 2D Time-Resolved Particle Image Velocimetry system, focused on different field of views. The degree of swirl for a swirling flow is usually characterized by the swirl number, Sn, defined as the ratio of the tangential momentum flux to axial momentum flux. To assess the impact of such parameter on the near-wall effusion behavior, a set of three different axial swirlers with swirl number equal to Sn = 0.6 - 0.8 - 1.0 were designed and tested in the experimental apparatus. An analysis of the main flow field by varying the Sn was first performed in terms of average velocity, RMS, and Tu values, providing kinetic energy spectra and turbulence length scale information. In a second step, the analysis was focused on the near-wall regions: the strong effects of Sn on the coolant jets was quantified in terms of vorticity analysis and jet oscillation.


Sign in / Sign up

Export Citation Format

Share Document